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Abstract 50 
 51 
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly 52 
in recent years with the availability of climate model simulations contributed to the 53 
assessment reports of the Intergovernmental Panel on Climate Change (IPCC).  54 
Collaboration between climate and LMR scientists and shared understanding of critical 55 
challenges for such applications are essential for developing robust projections of climate 56 
impacts on LMRs.  This paper assesses present approaches for generating projections of 57 
climate impacts on LMRs using IPCC-class climate models, recommends practices that 58 
should be followed for these applications, and identifies priority developments that could 59 
improve current projections.  Understanding of the climate system and its representation 60 
within climate models has progressed to a point where many climate model outputs can 61 
now be used effectively to make LMR projections.  However, uncertainty in climate 62 
model projections (particularly biases and inter-model spread at regional to local scales), 63 
coarse climate model resolution, and the uncertainty and potential complexity of the 64 
mechanisms underlying the response of LMRs to climate limit the robustness and 65 
precision of LMR projections.  A variety of techniques including the analysis of multi-66 
model ensembles bias corrections, and statistical and dynamical downscaling can 67 
ameliorate some limitations, though the assumptions underlying these approaches and the 68 
sensitivity of results to their application must be assessed for each application.  69 
Developments in LMR science that could improve current projections of climate impacts 70 
on LMRs include improved understanding of the multi-scale mechanisms that link 71 
climate and LMRs and better representations of these mechanisms within more holistic 72 
LMR models.  These developments require a strong baseline of field and laboratory 73 
observations including long time-series and measurements over the broad range of spatial 74 
and temporal scales over which LMRs and climate interact.  Priority developments in for 75 
IPCC-class climate models include improved model accuracy (particularly at regional 76 
and local scales), inter-annual to decadal-scale predictions, and the continued 77 
development of earth system models capable of simulating the evolution of both the 78 
physical climate system and biosphere.  Efforts to address these issues should occur in 79 
parallel and be informed by the continued application of existing climate and LMR 80 
models. 81 

82 
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1. Introduction 111 

Primary production by microscopic phytoplankton within the ocean ecosystem rivals 112 

total terrestrial production (Field et al., 1998) and supports a diverse array of organisms 113 

within the oceanic food web.  These "Living Marine Resources" (LMRs) encompass a 114 

broad range of fish, invertebrates, mammals, plants and reptiles that have diverse 115 

interacting life-histories, habitat needs, and ecologies.  Many LMRs are commercially 116 

harvested, providing valuable food resources to human populations and a diversity of 117 

other economically significant products.  Other LMRs greatly enhance local economies 118 

through recreation and tourism.  All LMRs play a role in establishing and maintaining the 119 

structure and function of marine ecosystems, though some LMRs are now threatened by 120 

intense harvesting, pollution, and habitat loss (Baillee et al., 2004; NOAA, 2006). 121 

In the past, LMR management has often been based on the assumptions that 122 

exploitation is the dominant factor shaping marine populations and that the ecosystem 123 

(including physical, chemical, and other biological constituents) is in long-term 124 

equilibrium.  These assumptions resulted in management strategies that emphasized 125 

population management through adjustments in harvest rates.  A multitude of studies, in 126 

contrast, have identified strong responses of LMRs to climate variability (e.g., Lehodey et 127 

al., 2006 and references therein) and evidence for responses to anthropogenic climate 128 

change is accumulating (Brander, 2010)1.  Excluding environmental factors linked to 129 

climate in LMR management has led to the misspecification of harvest controls, 130 

contributing to the diminished state of many exploited LMRs (Keyl & Wolff, 2008).  For 131 

                                                   
1 Detailed definitions of all climate-related terms can be found in the glossary of the IPCC 4th Assessment 
Report (Baede, 2007) which can be found at http://www.ipcc.ch/. 
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LMR management strategies to be effective in a variable and changing climate, they must 132 

more directly consider how climate is impacting LMR dynamics. 133 

Reliably predicting the impacts of future climate on LMRs requires both an 134 

understanding of the mechanisms through which climate acts, and skillful predictions of 135 

climate change and variability.  Climate model simulations contributed to the assessment 136 

reports of the Intergovernmental Panel on Climate Change (IPCC) are a primary means 137 

of analyzing climate dynamics and making projections of future climate change.  138 

Numerous examples of applications of IPCC-class climate models for assessing the 139 

impact of climate change and variability on LMR dynamics have appeared in recent 140 

literature (see Section 4), suggesting that IPCC-class climate models have utility for 141 

LMR prediction.  However, these studies have also revealed critical challenges that often 142 

stem from the need to reconcile information from climate models designed to capture 143 

large scale characteristics of the global climate system with the dynamics of individual or 144 

multiple LMRs, often at regional spatial scales and time scales of a few decades or less. 145 

This paper is the product of the workshop “Applying IPCC-class Models of 146 

Global Warming to Fisheries Prediction” that was held June 15-17, 2009 at Princeton 147 

University2. The development of effective and innovative applications of IPCC-class 148 

climate models to LMR science and management requires greater shared understanding 149 

of the challenges faced by climate and LMR scientists.  This paper pursues this broad aim 150 

by assessing present approaches for generating projections of climate impacts on LMRs 151 

using IPCC-class climate models, recommending practices that should be followed in 152 

such applications, and identifying priority developments that could improve current 153 

                                                   
2 More information on the workshop, including a list of attendees and presentations, can be found at 
http://www.gfdl.gov/fisheries-and-climate-workshop. 
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projections.  The salient aspects of LMR dynamics and models (Section 2) and climate 154 

system dynamics and models (Section 3) are presented first with an emphasis on those 155 

aspects that shape applications of climate models to assessing the impact of climate 156 

change and variability on LMR dynamics.   Specific case studies are then described to 157 

further elucidate the strengths and limitations of present approaches (Section 4).  The 158 

case studies are followed by a discussion of recommended practices (Section 5) and 159 

priority developments (Sections 6) before concluding remarks are given (Section 7). 160 

 161 

2. Dynamics and prediction of living marine resources 162 

While many correlations between LMRs and climate variables have been documented 163 

they often fail over time (Myers, 1998).  This limits the utility of such relationships for 164 

assessing the impacts of climate change and variability on LMR dynamics.  Increased 165 

mechanistic understanding of the climate/LMR processes that underlie such correlations 166 

is needed for more reliable predictions.  The complexity of LMR dynamics and 167 

observational limitations pose formidable challenges to achieving this goal.  This section 168 

provides a synthesis of LMR responses to environmental change and a discussion of the 169 

utility of LMR observations and models for assessing the impacts of climate on LMR 170 

dynamics.  171 

 172 

2.1 The response of living marine resources to environmental change 173 

Environmental conditions affect LMRs in a wide variety of ways.  Vital rates such as 174 

growth, reproduction, consumption, and respiration are mediated by temperature and 175 

other climate-influenced factors such as salinity, oxygen, and alkalinity (Brander, 2010; 176 
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Drinkwater et al., 2009; Koster et al., 2003).  Biogeographical distributions and migration 177 

patterns shift in response to climate-related changes in habitat suitability (Cheung et al., 178 

2009; Frank et al., 1990; Jensen, 1939; Murawski & Mountain, 1990; Nye et al., 2009).  179 

Shifts in the timing of seasonal changes can alter life-history dynamics (Edwards & 180 

Richardson, 2004; Henson et al., 2009a; Koeller et al., 2009).  Climate impacts on LMRs 181 

extend to all organisms within the marine food web and can generate notable indirect 182 

effects on LMRs through trophic or shared-resource interactions (Richardson & 183 

Schoeman, 2004; Stenseth et al., 2002).  Lastly, the food web for many LMRs often 184 

includes significant commercial, recreational and subsistence harvesting by humans.  185 

Such direct connections between LMR dynamics and humans create linkages between 186 

LMRs and a broad set of social and economic factors (e.g., Mullon et al., 2009).  A 187 

growing number of studies suggest that ecosystems become more sensitive to climate 188 

impacts when they are heavily exploited (e.g., Brander 2005; Hsieh et al., 2006). 189 

The responses of LMRs to the array of interactions described above often are neither 190 

gradual nor linear.  Many organisms have threshold responses and can be highly sensitive 191 

to the short periods of environmental extremes that are far from average conditions 192 

(Glynn, 1984).  Abrupt shifts in the structure and function of ecosystems among 193 

otherwise persistent states, often referred to as regime shifts, have been noted across 194 

major ocean basins (deYoung et al., 2008; Hare & Mantua, 2000; Overland et al., 2008; 195 

Steele, 1998).  Such shifts can have profound impacts on LMRs, the roles they play 196 

within ecosystems, and the economies that they support. 197 

Connections between environmental variations and marine populations occur across a 198 

large range of interacting spatial, temporal and organizational scales (Dickey, 2003; 199 
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Haury et al., 1978, Fig. 1).   Identifying fundamental scales on which patterns emerge, 200 

how these patterns change across scales, and the linkages between processes that unfold 201 

on different scales represent key challenges for assessing the impact of climate on LMR 202 

dynamics (Levin, 1992).  Metagenomic studies have inspired efforts to link 203 

suborganismal scales with an understanding of the distribution of organisms.  At the next 204 

scale, the ability of organisms to encounter their prey (Kiorboe, 2008; Rothschild & 205 

Osborn, 1988), successfully fertilize eggs (Levitan & Sewell, 1998) and send and receive 206 

chemical signals (Zimmer & Butman, 2000) are affected by hydrodynamic processes that 207 

occur at the scale of individual organisms.  At intermediate scales, tens to hundreds of 208 

kilometers from days to seasons, productivity and community species composition can be 209 

influenced by submesoscale and mesoscale ocean features such as fronts, eddies, and the 210 

strength of upwelling structures (Bakun, 1996; Bakun, 2001; Boersma et al., 2009; Ji et 211 

al., 2008; e.g., Richardson et al., 2009).   At longer time-scales and broader spatial scales, 212 

interannual to decadal fluctuations in the climate system occurring across thousands of 213 

kilometers such as El Niño, the North Atlantic Oscillation, and the Pacific Decadal 214 

Oscillation may affect broad regional and ocean basin-scale variations of LMR 215 

populations (e.g., Alheit et al., 2005; Hollowed et al., 2001; Mantua et al., 1997; 216 

Schwartzlose et al., 1999).  At the largest scales, variations resulting from global-scale 217 

climate changes occurring over centuries come into play.  Linkages between evolutionary 218 

change and ecological processes provide a unifying framework for understanding 219 

processes occurring across all these scales. 220 

Many LMRs have complex life histories that include morphologically distinct stages 221 

of often vastly different sizes that occupy different habitats.  Survival during early life 222 
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stages (eggs, larvae, and juveniles) may be sensitive to environmental fluctuations with 223 

time scales of days to weeks and spatial scales of meters to kilometers (Fuimann & 224 

Werner, 2002; Rothschild, 1986). The survival of adult stages, in contrast, may be more 225 

sensitive to environmental signals that are coherent across ocean basins and multiple 226 

years.  The multi-year nature of LMR life cycles can provide a buffer between 227 

environmental variations and population responses and impose a lag between the initial 228 

influence of environmental perturbations and its most observable impacts (Ottersen et al., 229 

2006), further complicating efforts to define mechanistic linkages. 230 

While LMR dynamics reflect the integration of environmental information across a 231 

broad range of spatial and temporal scales, many studies suggests that some scales are 232 

more important.  A disproportionately large amount of harvested LMRs are caught in 233 

coastal regions (FAO, 2007; Pauly & Christensen, 1995).  Nearly half of marine fish 234 

landings in 2004 were caught within 185 kilometers (100 nautical miles) of shore in 235 

waters less than 200m in depth which accounted for < 7.5% of the ocean area (Nellemann 236 

et al., 2008).  Changes in many of these LMRs have been linked to global and basin-scale 237 

climate variations but improved mechanistic understanding of this linkage requires 238 

resolving the manifestation of global and ocean basin-scale dynamics on shelf-scale 239 

processes.  Survival during early life stages is often a major source of variability for 240 

LMRs (Rothschild, 1986) and many eggs, larvae and juveniles rely upon near coastal 241 

regions (e.g., inlets, estuaries and rivers) and can be particularly sensitive to the timing of 242 

seasonal changes (e.g., Cushing, 1990; Hjort, 1914).  Lastly, while understanding the 243 

century-scale implications of climate change for LMRs is of great scientific and 244 

economic interest, reliable projections on inter-annual to decadal time scales are essential 245 
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for ensuring the sustainable harvest of LMRs and for enabling dependent industries and 246 

communities to adapt to changes in LMR productivity and distribution. 247 

 248 

2.2: Living marine resource observations 249 

 The detection and diagnosis of climate impacts on LMRs requires observations 250 

over the relevant range of spatial and temporal scales.  Consistent observations over 251 

several decades are often required to differentiate the effects of climate variability from 252 

those of climate change (e.g., Henson et al., 2009b, Section 3.1.2).  Observations over a 253 

wide spectrum of spatial and temporal scales may be required to understand the 254 

mechanisms underlying LMR changes (i.e., Section 2.1, Fig. 1).  Meeting these 255 

observational challenges requires committed maintenance of existing time series, 256 

continued development of LMR observing technologies capable of resolving 257 

LMR/climate interaction over a broader range of scales, and the preservation and use of 258 

unique historical, archeological and paleoecological measurements that may extend 259 

LMR/climate records over multiple centuries. 260 

LMR observations for harvested species can be divided into two broad types.  261 

Fishery-dependent data collected during commercial and recreational harvests, and 262 

fishery-independent data generally collected during scientific research surveys.  Note that 263 

while these classifications refer specifically to harvested fisheries, most of the dataset 264 

properties discussed below can be generalized to other harvested and non-harvested 265 

LMRs (e.g., invertebrates, marine mammals). 266 

The duration of fishery-dependent data varies widely by fishery.  Traps for 267 

bluefin tuna in the Mediterranean Sea, for example, provide fishery catch records 268 
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stretching back several centuries (Ravier & Fromentin, 2001).  Long-standing 269 

industrialized commercial fisheries routinely have several decades of commercial catch 270 

records.  Less established commercial and subsistence fisheries, in contrast, can have far 271 

more limited information.  Fishery-dependent data generally includes stock-specific catch 272 

numbers and biomass and, in many cases, biological and oceanographic information 273 

gathered by observers aboard fishing vessels and portside sampling (e.g., Keller et al., 274 

2008).  Catch biomass may include both commercially harvested and incidentally 275 

captured stocks.  Additional information on limited samples of landed animals may 276 

include sex ratios, size frequencies, diet, maturity and fecundity.  Many countries have 277 

also initiated underway vessel monitoring systems and acoustic echo-integration methods 278 

to provide continuous information on the spatial distribution of LMRs.  While fishery-279 

dependent data provides invaluable information to LMR science and management efforts, 280 

the spatial sampling pattern, frequency, and fishing techniques used may change several 281 

times within a fishery-dependent time series.   Changes can occur due to new technology, 282 

government management actions to restrict or increase catches, and market shifts.  Thus, 283 

careful study of fishery-dependent observations is necessary to prevent false 284 

interpretation of technological, management, or market driven changes as true changes in 285 

the productivity, distribution and abundance of LMRs. 286 

Scientific fishery-independent survey programs have been established across 287 

much of the globe to address the interpretive limitations of fishery-dependent data and to 288 

support fishery management.  Most fishery-independent surveys have carefully designed 289 

spatial and temporal sampling strategies and use relatively uniform sampling 290 

methodologies to provide a consistent census of LMRs within a region.  In some cases, 291 
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surveys include measures of diverse aspects of the exploited stock including relative 292 

abundance, weight, distribution, length, age, maturity, and diet.  Hydrographic and 293 

planktonic (e.g., chlorophyll, primary production, zooplankton biomass) sampling is also 294 

becoming more common based on the early recognition that oceanographic variability 295 

can drive variations in fisheries (e.g., Hjort, 1914).  In the North Atlantic and North 296 

Pacific, many fishery-independent surveys have been operating for multiple decades and 297 

some have been conducted for 50 years or more. 298 

Fishery-independent surveys generally address the interpretive limitations 299 

imposed by sampling changes over time that effect many fishery-dependent datasets. The 300 

spatial and temporal resolution of fishery-independent surveys, however, remains coarse 301 

relative to the space and time scales of many physical and biological processes thought to 302 

influence LMRs (Fig. 1).  Station spacing for fishery-independent surveys is often tens to 303 

hundreds of kilometers and surveys are often annual or restricted to a few times a year at 304 

best.  This makes effectively sampling multiple species over diverse habitats a challenge.   305 

The coarse resolution of most fishery-independent LMR surveys contrasts with 306 

fine-resolution physical measurements provided by advances in satellites, high frequency 307 

radar systems, drifters, moorings, flow-through systems, towed bodies, autonomous 308 

underwater vehicles, and ocean observing systems.  Closing this sampling gap is 309 

important for understanding and constraining the mechanisms that link climate 310 

fluctuations and LMR responses.  Intensive process-oriented surveys and new LMR 311 

observing technologies offer two means of achieving this.  Process-oriented surveys 312 

supplement census surveys by undertaking more extensive sampling activities for a 313 

shorter period of time (often 3-5 years) aimed at resolving key uncertainties in LMR 314 
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dynamics.  New LMR observing technologies can refine the spatial and temporal 315 

resolution of observations and have been incorporated into both process-oriented and 316 

census surveys.  These new technologies include acoustic biomass estimates for LMRs 317 

that do not inhabit waters near the benthos.  Such estimates have been included in 318 

assessment models for a number of LMRs (Hamel & Stewart, 2009; Overholtz et al., 319 

2006; Traynor et al., 1990) and improved techniques are being developed (Makris et al., 320 

2009). Aerial surveys are enlisted for LMRs that can be detected from the surface 321 

(Churnside et al., 2003; Kenney et al., 1995).  Towed high-resolution underwater cameras 322 

provide additional information on the abundance and movements of both targeted and 323 

non-targeted fishery species (Cowen & Guigand, 2008; Rosenkranz et al., 2008).  324 

Electronic tags with multiple sensors (temperature, pressure, light) have provided 325 

invaluable information on LMR behavior and habitat, particularly for highly migratory 326 

fish, mammals, and reptiles (e.g., Block et al., 2005; Metcalfe & Arnold, 1997).  327 

The information on long time-scales of change in populations of fish and other 328 

marine taxa from historic, archaeological, or paleoecological studies is increasing rapidly 329 

(Emeis et al., 2010; Finney et al., 2010; Poulsen, 2010) and provides a particularly useful 330 

perspective on how current understanding of climate-ecosystem dynamics may be limited 331 

by our overwhelming reliance on short observational records. The longer records show 332 

that bottom-up effects are important and that the strength and even the sign of certain 333 

climate-ecosystem relationships may change over time (Finney et al., 2010). For 334 

example, the relationship between Pacific sockeye salmon and regional sea surface 335 

temperature (SST) has been positive over the past century, but was apparently negative in 336 

the mid to late 1800s. This variability does not mean that salmon populations are 337 
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unaffected by the processes that impact SST, but it does mean that the relationship is 338 

more complex than might be assumed from recent records.  The complexity of 339 

relationships between climate state and fish abundance suggests a variety of modes of 340 

climate variability and ecosystem dynamics.    Long term records of marine population 341 

fluctuations provide strong evidence that climate affects their production and composition 342 

and helps to identify the time and space scales at which these relationships manifest 343 

themselves (Emeis et al., 2010).  Comparing the statistics of such long records with 344 

historical and control climate model simulations may offer interesting new insight into 345 

the factors and modes of climate variability driving observed fluctuations.  346 

 347 

2.3: Living marine resource models 348 

A broad range of models are used for LMR assessment and forecasts that could be 349 

adapted for climate change applications.  The models have different objectives, forms, 350 

and governing equations and can be arranged according to their degree of complexity 351 

(e.g., Hollowed et al., 2000; Howard et al., 2008; Plaganyi et al., 2007; Whipple et al., 352 

2000).  Each model type, ranging from simple to complex, has different trade-offs.  353 

Simple models tend to make strong assumptions, relying heavily upon empirical 354 

relationships between measured variables and emergent LMR responses that are 355 

presumed stationary.  Simple models may not accommodate environmental or spatial 356 

heterogeneity, may consider the population dynamics of one LMR, or may coarsely 357 

aggregate organisms into very broad functional groups. It is generally more feasible to 358 

constrain the limited number of parameters in simple models with existing observations 359 

(Section 2.2).  Simple models often yield more precise solutions and it is generally more 360 
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feasible to analyze model sensitivity and define the range of forecast uncertainty.  This 361 

precision, however, arises in part from the rigidity of simple model structures and model 362 

errors or omissions will not be reflected in the range of model outcomes.    363 

Complex models attempt to more comprehensively capture many aspects of LMR 364 

dynamics and their associated uncertainty (i.e., Section 2.1).  Complex models strive to 365 

recreate emergent LMR patterns by combining more direct underlying relationships 366 

between organisms, their resources, their predators, and their physical environment.  367 

While reliance on more fundamental ecological relationships should make model 368 

predictions in a changing climate more robust, model misspecification can occur and 369 

explicit resolution of many additional processes introduces a large number of new 370 

parameters that are difficult to constrain with existing observations.  This makes the 371 

analysis of model sensitivity and uncertainty more difficult and computationally 372 

intensive, and often results in a broader range of possible outcomes.  Alternatively, more 373 

flexible and realistic model structures in complex models reduce the potential for model 374 

errors arising from oversimplification of the model dynamics. 375 

The rest of this section provides an overview of the models used for LMR 376 

assessment and forecasting and, along with the case studies presented in section 4, 377 

discusses their utility (and the implications of the simplicity/complexity trade-offs 378 

discussed above) for forecasting LMR responses to climate change.  Traditional single-379 

species stock assessment models are discussed first.  Single-species stock assessment 380 

models focus on the dynamics of a target LMR and form the backbone of many LMR 381 

management efforts. Next, a range of other modeling approaches are presented under the 382 

broad heading “ecosystem approaches”.  This heading reflects a general shift in the 383 
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model’s emphasis from a single stock of interest to interactions between organisms and 384 

between organisms and their environment.  It is notable, however, that there is no clear 385 

delineation between ecosystem approaches and single-species stock assessment models.  386 

Many single-species stock assessment models do incorporate and emphasize 387 

environmental and climate interactions (Keyl and Wolff, 2008).  The delineation is thus 388 

simply a pragmatic means of reviewing fundamental principles and assumptions of 389 

widely-used stock assessment models before reviewing the scope of potential 390 

climate/LMR modeling approaches. 391 

 392 

2.3.1: Traditional single-species stock assessment models 393 

Management of exploited or endangered LMRs can have numerous objectives, 394 

but an overarching goal is to maintain healthy resource populations while allowing 395 

economic and societal utilization3.  Human utilization can include the directed take of 396 

target species (e.g., fisheries), the by-catch of non-target species associated with target 397 

species, or accidental take of endangered species (e.g., ship strike of whales or by-catch 398 

of sea turtles in fishing gear). LMR management decisions are usually based on an 399 

assessment of the populations past fluctuations and present state (a hindcast), and a 400 

forecast of future status. Many single-species assessment models estimate the present 401 
                                                   
3  For more detailed information on stock assessment, an accessible general overview is 

provided by Cooper (http://www.seagrant.unh.edu/stockassessmentguide.pdf) or Haddon 

(2001).  More detailed treatments are provided by Hillborn and Walters (1992) or Quinn 

and Deriso (1999).  For endangered species, population viability analysis (PVA) is often 

used.  Details of this method can be found in Beissinger and Mccollough (2002). 

 



16 
 

state and past fluctuations of three key metrics for a LMR within a management area: 402 

how much LMR biomass is present, how much LMR biomass is being removed, and how 403 

much LMR biomass is being replenished.  Reductions in biomass can occur due to 404 

fishing mortality (F), natural mortality (M), and emigration (E).  Replenishment can 405 

occur due to growth of the existing exploitable stock (G), immigration (I) or the addition 406 

of young LMRs to the exploited stock (recruitment, R). 407 

At the core of nearly all single-species stock assessment models is a more 408 

complex version of the following basic population dynamics equation that describes 409 

changes in biomass (B) due to the processes described above: 410 

 � � � �tttttttt EMFIGRBB ��������1  (1) 

The time (t) can be measured at a variety of scales, typically in years or seasons.  Typical 411 

data sources are historical catch records, survey biomass indices, and age and size 412 

compositions. (Section 2.2).  Model parameters are statistically fit to observations.  413 

 Single-species stock assessment models are generally used to estimate biological 414 

reference points that are used to make management decisions. In fisheries, most 415 

biological reference points are based on the concept of maximum sustainable yield 416 

(MSY), the largest catch that can be removed from a population over a long period of 417 

time (i.e., without depleting the stock).  Theoretically, a population is maintained at MSY 418 

by balancing removals with population increases due to new individuals entering the 419 

population.  While maintaining the population at the biomass that provides the MSY 420 

harvest would be optimal, it is generally recognized that the MSY estimated by 421 

traditional assessment models cannot be maintained perfectly due to LMR variability that 422 

is not captured by the models. Precautionary biological reference points are thus 423 
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recommended (Mace, 2001).  In the United States, biological reference points are set 424 

such that the target biomass or fishing mortality is less than or equal to the limit biomass 425 

or fishing mortality.  If the estimated biomass is below the limit, the stock is declared 426 

overfished.  If the estimated fishing mortality is over its limit reference point, overfishing 427 

is occurring.  Actions are taken based on these determinations to end overfishing and to 428 

allow the overfished stocks to recover. These management actions are informed by model 429 

forecasts based upon the model developed from the hindcast.  Forecasts are generally 430 

made for annual to decadal time scales under a variety of fishing or effort limitation 431 

scenarios in order to determine the total allowable catch or effort likely to ensure that 432 

biological reference points are satisfied within a specified time. 433 

 Many stock assessments rely upon limited observations and relatively simple, 434 

highly empirical relationships to constrain the potentially complex processes in eq. (1).  435 

Recruitment (R) is an example of a particularly critical process in most stock assessment 436 

models (Haltuch & Punt, In Review; Myers, 1998) that is commonly assumed to be a 437 

function of stock biomass (B).  Several mathematical forms are used for this “stock-438 

recruitment relationship” (Hilborn & Walters, 1992; Quinn & Deriso, 1999) one of which 439 

is that of Ricker (1954): 440 

 tB
tt eBR ��� ��

� �1  (2) 

This form assumes an initial increase in R with B proportional to  , followed by a 441 

decrease in R as B approaches a habitat’s carrying capacity (~ ).  �t is a stochastic 442 

error around the stock recruitment relationship which includes the contributions of any 443 

other factors that may influence recruitment and can be substantial (Rothschild, 1986).  444 

Direct observation of R is rarely possible, so estimates of the parameters the recruitment 445 
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relationship are generally derived by fitting the population dynamics model (eq. (1)) to 446 

the best fit estimates of recruitment and biomass.  Thus, the potentially complex process 447 

of recruitment is posed as an empirical relationship with spawning biomass with variance 448 

due to other factors. 449 

 There are numerous approaches for incorporating climate forcing in single-species 450 

stock assessment models.  The most common examples include cases where climate 451 

variables are used to improve a model's fit by modifying the processes included in eq. (1) 452 

(Keyl & Wolff, 2008; NMFS, 2001).  For example, many authors, including case study 453 

4.4 herein, have incorporated environmental variability into recruitment by modifying the 454 

Ricker (1954) equation to include an environmental factor (E):  455 

 ��� ���
� � cEB

tt
teBR 1  (3) 

E could be any of a number of environmental factors (e.g., sea surface temperature, 456 

salinity, alkalinity) and c is the parameter determining the impact of the environmental 457 

data.  While environmental information can be readily incorporated into stock 458 

assessments in his fashion it is often difficult for relationships such as eq. (3) to elucidate 459 

the mechanisms driving the relationships between environmental variation and the LMR 460 

response.  Models that do incorporate environmental data are in some case referred to as 461 

Extended Stock Assessment Models (ESAMs).  462 

 Long term projections of traditional stock assessment models with environmental 463 

data based on IPCC climate change predictions pose some challenges. Using the stock-464 

recruitment relationship, for example, may be problematic due to the uncertainty in the 465 

robustness of emergent relationships between LMR dynamics and environmental factors 466 

in a changing climate (e.g., Finney et al., 2010).   Furthermore, in most cases the 467 
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available fisheries data (Section 2.2) are not sufficient to resolve the connections between 468 

the population process of interest and environmental factors thought to influence this 469 

process, particularly when the effects of environmental change may be confounded by 470 

fishing (Haltuch & Punt, In Review).  Stocks that show periodic strong recruitment 471 

events with little recruitment in between often have only a few strong recruitment events 472 

from which to make inferences (Hamel & Stewart, 2009).  Issues such as those described 473 

above have engendered an active debate regarding the inclusion of environmental 474 

correlates in stock assessment models without a more complete mechanistic 475 

understanding of the environment-LMR population interactions (Myers, 1998). 476 

 477 

2.3.2: Ecosystem approaches 478 

 A wide range of alternative approaches for modeling LMR dynamics have been 479 

developed and can complement and augment traditional single-species stock assessment 480 

models for LMR prediction.  Multispecies stock assessment models integrate the 481 

dynamics of several interacting resource stocks, but the dynamical relationships between 482 

them remain highly empirical.  Most of these models attempt to capture the dynamics of 483 

several species, simultaneously, usually via a population model (i.e., eq. 1), linked via 484 

feeding or technical interaction submodels (Hollowed et al., 2000; Howard et al., 2008; 485 

Whipple et al., 2000).  Most of these models do not explicitly address environmental 486 

considerations.  The GADGET, BORMICON, and MULTSPEC models (Begley & 487 

Howell, 2004; Bogstad et al., 1997; Stefansson & Palsson, 1998; Tjelmeland & Bogstad, 488 

1998) are an exception to this situation.  These models can explicitly examine and 489 

explore the outcomes among the range of tradeoffs resulting from the species interactions 490 
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and contrast environmental effects with fishing; a useful but rare combination of  factors 491 

that are considered simultaneously. 492 

Habitat models rely on past habitat observations and physiological information for 493 

LMRs to predict changes in stock distribution and range.  In the climate change 494 

context,habitat models that examine the relationship between climate variables and 495 

organism distributions are often referred to as bioclimactic envelope models and have 496 

been widely applied to project impacts of climate change on the distribution of plants and 497 

animals (e.g., Cheung et al., 2009; Heikkinen et al., 2006).   The most basic forms of 498 

habitat models assess only habitat suitability and do not take into account foodweb 499 

interactions, limitation to dispersal ability, or changes in ecosystem productivity.  Cheung 500 

et al. (2008a) have addressed some of these limitations by integrating bioclimate 501 

envelope,  population dynamics, and animal dispersal models (see Section 4.1).   502 

However, habitat models may still attribute LMR residence in a region to the wrong 503 

habitat characteristics.  Reliance upon previously observed distributions to define habitats 504 

introduces a strong empirical element to habitat models and requires the assumption that 505 

the observed distributions are at equilibrium with the environment. Lastly, poorly 506 

understood evolutionary adaptations to a changing climate may introduce a source of 507 

error to predicted distributions.  Incorporating direct physiological constraints for the 508 

organism of interest or applying macroecological theory can ameliorate these concerns. 509 

Aggregate biomass models link together groups of LMRs occupying similar 510 

positions in the marine food web to capture the basic characteristics of trophic groups, 511 

often in the form of mass-balanced energy flows through the marine ecosystem 512 

(Christensen & Pauly, 2004; Dame & Christian, 2006; Heymans & Baird, 2000; Howard 513 
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et al., 2008; Plaganyi et al., 2007; Polovina, 1984).  These models can also incorporate 514 

fishing and other losses linked to humans.  However, the mathematical representation and 515 

parameter values used to specify predator-prey interactions are difficult to constrain and 516 

can have a large impact on model dynamics (Walters et al., 1997).  These difficulties 517 

generally lead to less precise solutions though, as was pointed out above, this decreased 518 

precisions may more appropriately reflect the range of possible solutions.  Greater 519 

aggregation of similar species or of age or of size classes within a species can ameliorate 520 

difficulties in parameterizing these models, but at the price of losing resolution of inter-521 

species interactions and life cycle dynamics.  These models can accommodate some 522 

aspects of both spatial dynamics and environmental fluctuations (Martell et al., 2005; 523 

Pauly et al., 2000). 524 

Individual-based models (IBMs) simulate LMRs by tracking individuals; the sum 525 

of which comprise the population. This approach maximizes the ability to capture the 526 

mechanistic underpinnings of emergent observed patterns (Grimm et al., 2005). The IBM 527 

approach has been used in forest succession modeling for decades, and has seen an 528 

explosion of application to fish since the 1990s (DeAngelis & Mooij, 2005; Van Winkle 529 

et al., 1993). IBMs are often implemented into highly resolved physical simulations, 530 

where behaviors can lead to profound shifts in dispersal and retention (North et al., 2009; 531 

Werner et al., 2001).  The advantages to the individual-based approach, relative to the 532 

more aggregated (biomass, age, stage) approaches, include allowing for more direct 533 

simulation of episodic, local, and size-based interactions, direct representation of 534 

movement, direct simulation of  the effects of individuals experiencing environmental 535 

conditions over time, and including physiological and behavioral plasticity (Huston et al., 536 
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1988; Tyler & Rose, 1994).  IBMs share the data intensive parameterization and 537 

decreased precision issues that characterize aggregate biomass approaches. They are also 538 

computationally intensive, particularly when realistic abundances are desired for food 539 

web calculations.  However, the use of “super-individuals” (Parry & Evans, 2008; 540 

Scheffer et al., 1995) has made such analyses more feasible. Models of lower trophic 541 

level organisms (e.g., zooplankton) and early life stages of higher trophic level LMRs 542 

(e.g., eggs and larval fish) are available; models that close the life-cycle of higher trophic 543 

level LMRs so that multiple generational simulations can be performed to assess the 544 

long-term effects of climate on LMRs are advancing but remain mostly focused on 545 

single-species dynamics (Lett et al., 2009).   546 

Recent efforts to develop models that fully integrate highly resolved physics, 547 

planktonic dynamics, LMR dynamics and human dimensions strive to combine various 548 

modeling threads described above (Barange et al., in press; Fulton et al., 2004b; Rose et 549 

al., in press; Travers et al., 2007).  Such models are often referred to as “end-to-end” 550 

models and can support a myriad of climate/LMR interactions.  They are ambitious 551 

attempts to comprehensively represent the scope of LMR dynamics described at the 552 

outset of this Section. Several concerted efforts to develop end-to-end models are 553 

underway (e.g., see Section 4.6). Shin and Cury (2001) used an individual-based 554 

approach to simulate a many-species food web (called OSMOSE: Objected-oriented 555 

Simulator of Marine ecOSystems Exploitation) on a 2-D spatial grid of cells and coupled 556 

the higher trophic level with a planktonic ecosystem model. The model was used to 557 

examine various aspects of fishing on the food web (e.g., Shin & Cury, 2004; Travers et 558 

al., 2007). The IGBEM and BM2 models (Fulton et al., 2004a,b), now called Atlantis, 559 
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separate each fish species or group into age-classes, and coupled the fish to an elaborate 560 

3-dimensional water quality model. The model has been used for site-specific analyses 561 

(e.g., Fulton et al., 2004a), and for exploring general aspects of fishing effects on fish 562 

communities (e.g., Fulton et al., 2005).  An alternative to representing the community at 563 

the species level is size-based models (Baird & Suthers, 2007), whereby the state 564 

variables represent a progression of size classes rather than association with any 565 

particular species.  The QUEST-fish model (Barange et al., in press) uses a combination 566 

of climate, planktonic, fishery, and socioeconomic models to study the impact of climate 567 

change on global fisheries production and national and regional economies.  While such 568 

models show great promise for revealing the responses of ecosystems to climate change, 569 

their parameterization is daunting and uncertainties can lead to a very wide range of 570 

outcomes.  Adequately exploring the parameter and structural uncertainty in such models 571 

to generate the range of outcomes on climate change time scales also poses a 572 

computational challenge.  These issues, along with the early developmental stage of most 573 

models of this type, caused Rose et al. (in press) to caution against using end-to-end 574 

models for management decisions until they are more fully evaluated.  Fulton et al. (In 575 

review) agree that such models are not yet useful for “tactical” LMR advice (e.g., setting 576 

specific reference points and quotas), but argues that these models are quite useful for 577 

providing long-term strategic advice (e.g., evaluating the tradeoffs and interactions 578 

between LMR management policies emphasizing marine protected areas, quotas, or 579 

vessel buybacks, Fulton et al., (2007)) for LMR management and can accommodate a 580 

wide range of climate change effects. 581 

  582 
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3. IPCC-class climate models 583 

IPCC-class climate models are constructed to understand and predict the 584 

dynamics of the earth’s climate, which in simplest terms can be thought of as the 585 

“average weather”.  More precisely, climate is a statistical description of relevant 586 

quantities (e.g., air and sea surface temperature, precipitation, wind) in terms of mean and 587 

variability over a period in time ranging from months to thousands or millions of years 588 

(Baede, 2007).  To capture these quantities, climate models must represent the 589 

components of the climate system that control them (Fig. 2).  To predict LMR responses 590 

to climate change, this information must then be effectively integrated with tools for 591 

LMR prediction (Section 2.3). 592 

This section provides an overview of the architecture of climate models and the 593 

century-scale climate change simulations that are central to both the fourth IPCC 594 

assessment report (IPCC AR4) and remain critical components of the fifth assessment 595 

(IPCC AR5) that is presently underway.  Aspects of the models and simulations that 596 

strongly affect the manner in which these models can be applied to LMR problems are 597 

synthesized.  Two relatively new model configurations that may allow for new 598 

applications after IPCC AR5 are also described.  These are inter-annual to decadal scale 599 

prediction experiments with physical climate models, and earth system model 600 

simulations. 601 

 602 

3.1 Century-scale climate model simulations 603 

The objective of the century-scale climate change simulations conducted for IPCC 604 

AR4 and presently underway for IPCC AR5 is to simulate and understand the causes of 605 



25 
 

historical climate changes (1860 to present day) and to make global projections of 606 

climate change over the next century including an assessment of the uncertainty in those 607 

projections.  Climate model realism has increased steadily over the past decades with 608 

increasing computer power and new understanding of climate system dynamics (Le Treut 609 

et al., 2007).  A typical climate model used for IPCC AR4 couples dynamical 610 

atmosphere, ocean, land, and sea-ice models into what is referred to as an Atmosphere-611 

Ocean General Circulation Model (AOGCM).  AOGCMs simulate the dynamics of each 612 

of these components and the exchanges of thermal and kinetic energy, water, and 613 

potentially gases and aerosols between them. Model dynamics are derived from physical 614 

laws (e.g., the laws of motion and thermodynamics) discretized in time and three-615 

dimensional space and solved numerically.  The reliance of climate models on 616 

fundamental physical principles and their ability to capture prominent observed features 617 

of past and present climate give considerable confidence that physical climate models 618 

provide credible quantitative estimates of future climate change (Randall et al., 2007).  619 

Confidence is generally greater at continental scales and above, however, and varies by 620 

climate variable.  The biosphere (e.g., Fig. 2, ocean biogeochemistry, land vegetation) 621 

was not explicitly resolved in most AR4 models and models of this type are thus often 622 

referred to as “physical climate models”.  This convention will be maintained herein.  623 

The resolution of the physical climate models used for IPCC AR4 varies between models 624 

and between components (Table 1).  Typical oceanic horizontal resolutions are ~1-2o, 625 

atmospheric and land horizontal resolutions are ~2-3o.  The number of vertical levels in 626 

the oceanic and atmospheric components may vary from as few as 10 to as many as 50.  627 

Atmospheric time resolution is ~10-20 minutes whereas oceanic time resolution is 628 
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usually an hour or two.  Over the course of several months to a year of real time, climate 629 

model simulations with these resolutions can be run for the several thousand model years 630 

required to conduct the wide range of century-scale experiments analyzed in IPCC AR4.  631 

In particular, climate models are run for multi-century integrations in order to 632 

characterize internal variability in the natural climate system, forced climate changes due 633 

to greenhouse gas accumulation, and any systematic separation (or drift) of the modeled 634 

climate away from observations.  Results are typically archived at the model's spatial grid 635 

resolution.  However, it should be noted that problems associated with data volume place 636 

a practical limit on the amount of information archived.  Thus, monthly averaged 637 

information is archived for most variables though some are archived at finer intervals4. 638 

The effects of oceanic, atmospheric and land processes that occur at spatial and 639 

temporal scales finer than the model resolution are represented in climate models by 640 

relationships to properties that are resolved.  These “subgrid-scale parameterizations” are 641 

often based upon simplified physical models of the unresolved processes or empirical 642 

relationships.  Oceanic mesoscale eddies, for example, are not captured by typical climate 643 

model resolutions.  Lateral eddy-driven mixing and stirring in the ocean is thus often 644 

represented by a "diffusion-like" equation with the mixing coefficient scaled according to 645 

properties of the mean flow (e.g., shear) and the lower limit of the resolved motions (e.g.,  646 

Gent et al., 1995; Smagorinsky, 1963).  Such subgrid-scale parameterizations vary 647 

between models and are a notable source of inter-model differences in climate predictions 648 

(see Section 3.1.4). 649 

                                                   
4  Model simulations analyzed for IPCC AR4 can be accessed through the Program for 
Climate Model Diagnostics and Intercomparison (PCMDI) website: http://www-
pcmdi.llnl.gov/ . 
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Century-scale climate model simulations are generally initialized around the year 650 

1860, before the bulk of anthropogenic greenhouse gas emissions.  However, since there 651 

are very limited ocean observations from before 1960 or so, the simulations must be 652 

initialized with model output from long “control” integrations.  The radiative forcing 653 

(e.g., solar insolation, volcanoes, greenhouse gases, aerosols, land use and associated 654 

albedos) for these control integrations is set to conditions near 1860 and the model is 655 

allowed to reach a quasi-equilibrium with 1860 conditions.  This quasi-equilibrium 656 

climate defines a baseline from which the impact of changes in radiative forcing can be 657 

assessed and analyzed.  However, simulations started from such an initial condition will 658 

not match the phase of natural inter-annual to multi-decadal scale climate modes (e.g., 659 

NAO, ENSO, PDO) during historical or future periods.  At best, the simulations will 660 

reproduce the statistical properties of such phenomena if the climate system dynamics 661 

responsible for these climate modes are properly represented in the model (Randall et al., 662 

2007) . 663 

Climate models require prescription of radiative forcing scenarios.  These 664 

scenarios can include changes in natural, externally imposed radiative drivers (e.g., the 665 

amount of radiation incident upon the earth, volcanic activity) or human-influenced 666 

drivers such as greenhouse gases and aerosols.  For the historical period, estimates based 667 

upon available observations are used to produce a time series for each driver (Forster et 668 

al., 2007).  Some elements, such as CO2, are well constrained.  Others, such as the spatial 669 

distribution of radiatively active aerosols, are highly uncertain.  To make projections, 670 

scenarios of future population, technological development, and societal choices are 671 

developed and these are used to estimate future anthropogenic emissions and atmospheric 672 
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concentrations of radiatively active gases, including all major greenhouse gas species 673 

(Nakicenovic et al., 2000).  These trajectories form the primary forcing for climate model 674 

projections (Meehl et al., 2007).  The three primary scenarios used in AR4 are known as 675 

SRES scenarios B1, A1B and A2 and essentially correspond to low, moderate, and high 676 

future emissions respectively. 677 

Several characteristics of the century-scale climate simulations outlined in the 678 

preceding paragraphs must be considered closely when attempting to link climate change 679 

to project LMR variations under future climate scenarios: model resolution, the interplay 680 

between internal variability and radiatively forced changes, regional model biases, and 681 

inter-model spread.  The sections that follow discuss each of these issues in detail.  682 

Downscaling techniques will also be discussed within the model resolution subsection 683 

(3.1.1). 684 

 685 

3.1.1: Model resolution 686 

The objectives and design of century-scale climate model simulations emphasize 687 

global-scale climate dynamics over multiple decades to a few centuries.  One of the 688 

major challenges in applying IPCC-class climate models to LMR problems is reconciling 689 

this emphasis with the space and time scales important to LMRs (Section 2.1, Fig. 1).  690 

This issue is particularly prominent in coastal waters, where the majority of LMRs are 691 

harvested.  In most AR4 climate models, a single grid cell may span the entire shelf 692 

width.  For example, the left panel of Fig. 3 shows the climatological near-surface 693 

horizontal and vertical currents off the Pacific Northwest Coast of the U.S.A. from the 694 

GFDL CM2.1 coupled climate model (Delworth et al., 2006; Gnanadesikan et al., 2006; 695 
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Griffies et al., 2005; Stouffer et al., 2006; Wittenberg et al., 2006).  Simulations from this 696 

model were contributed to IPCC AR4 and it has an oceanic resolution of 1°x1° and an 697 

atmospheric resolution of 2.5°x2°.  The right panel of Figure 3 shows the same quantities 698 

for the GFDL CM2.4 coupled climate model (Farneti et al., in press), which has an 699 

oceanic resolution of 0.25°x0.25° at the equator and an atmospheric resolution of 1°x1°.  700 

This resolution translates to ~15 km oceanic resolution at this latitude because the CM2.4 701 

model grid preserves the aspect ratio of the grid cells as lines of longitude converge with 702 

increasing latitude.  Both CM2.1 and CM2.4 are characterized by a southward mean flow 703 

and upwelling near the coast, but the finer resolution CM2.4 simulation produces 704 

horizontal and vertical velocities that are more consistent with the vigorous, highly 705 

divergent observed currents in the region (e.g., Hickey, 1998).   706 

Refined resolution AOGCMs hold great promise for improving climate models 707 

and increasing their applicability to LMR problems.  However, the computational costs 708 

increase in proportion to the cube when the horizontal grid size halves due to required 709 

reduction in the time step that accompanies refined resolution.  In addition, developing 710 

robust fine resolution climate simulations requires a careful re-inspection of model 711 

physics.  Many of the processes previously handled by subgrid-scale parameterizations 712 

(Section 3.1) are now resolved and subgrid-scale dynamics may need reformulation (e.g., 713 

parameterized eddy mixing).  Output storage costs are also greatly increased unless 714 

adjustments to storage frequency, averaging, or the number of variables saved are made.  715 

Some fine resolution physical climate model results will likely be available for AR5 716 

(joining the MIROC-Hi results from AR4), but the experiments carried out with these 717 

models will likely be limited and the majority of AR5 century-scale simulations will be 718 



30 
 

conducted with resolutions similar to or slightly finer than those in AR4 (i.e., Table 1, 719 

resolutions similar to the left panel of Fig. 3). 720 

There are aspects of LMR dynamics that respond to basin-scale patterns directly 721 

resolved by climate models.  Highly migratory fish such as tuna, for example, react to 722 

broad oceanic patterns and tuna have been modeled using coarse climate model results as 723 

environmental inputs (see Section 4.2).  However, even in such cases, resolution of the 724 

actual oceanic features (i.e., fronts, eddies) to which LMRs respond is often limited.  725 

There are, however, “downscaling” techniques by which information about finer spatial 726 

and temporal scale dynamics that are not resolved by climate models can be extracted 727 

from the coarser, resolved scales.  Downscaling techniques fall into the two general 728 

categories of “statistical” and “dynamical” techniques – with hybrid techniques also 729 

possible.  Statistical downscaling relies on empirical relationships between resolved, 730 

larger-scale features and unresolved fine scale features.  An advantage of statistical 731 

downscaling is relatively low computational cost.  Disadvantages of statistical 732 

downscaling include the necessity of assuming stationarity in the statistical relationship, 733 

the difficulty in selecting the relevant predictors (multiple statistical predictors can be fit 734 

to the training data equally well, but give fundamentally different implications when 735 

applied to GCMs; e.g., Vecchi et al 2008), and the potential influence of observational 736 

errors on the development of the statistical model.   737 

A wide variety of statistical downscaling models have been used for climate 738 

applications over land (Blenckner & Chen, 2003; Christensen et al., 2007; Salathe Jr, 739 

2005) but have been employed much less frequently in the marine environment where 740 

there are few long data records needed to establish reliable statistical relationships for 741 
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climate variables.  Nevertheless, statistical downscaling may provide useful information 742 

for studying the oceans. For example, Overland et al. (2002) investigated how local air-743 

sea interactions known to be important to the ecosystem of the Bering Sea shelf relate to 744 

large-scale modes of climate variability, while Heyen et al (1996) related sea level 745 

anomalies along the Baltic Sea coast to large-scale North Atlantic air pressure anomalies.  746 

Another example of statistical downscaling is given in case study 4.4. 747 

A number of methods have been employed in statistical downscaling including 748 

linear regression or pattern based variants such as canonical correlation analyses (CCA, 749 

Karl et al., 1990), analogues, where a forecast is matched to past conditions (Hamill et 750 

al., 2006), local rescaling of a predicted variable (Widmann et al., 2003) general additive 751 

models (GAMS, Hastie & Tibshirani, 1990) and neural networks (Cavazos, 1997). 752 

Hewitson and Crane (1996), Wilby et al. (2004), Haylock et al. (2006) have evaluated the 753 

strengths and weaknesses of various downscaling methods and Wilby et al. (2004) 754 

discuss which ones are appropriate for a given application. One can test the efficacy of 755 

the predictors, which can include atmospheric, oceanic and ecological variables, e.g. 756 

SST, upwelling, NO3, plankton biomass, depending on the LMR variable(s) one wished 757 

to predict. The statistical relationships should be tested using a jackknife approach, where 758 

some of the data is reserved for validation and not included when developing the model. 759 

Dynamical downscaling uses fine resolution dynamical models to estimate fine-760 

scale dynamical features.  Advantages of dynamical techniques include the physical 761 

consistency of the solutions and their reliance upon fundamental physical principles; 762 

disadvantages of dynamical techniques include the higher computational cost of running 763 

the models, complexity of running fine resolution models with a coarser resolution (in 764 
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time and space) physical climate model constraints, and the inability of even very fine 765 

resolution models to represent all of the processes that control some ecosystem-relevant 766 

features (i.e. Fig. 1).  Lastly, while dynamical downscaling may improve the 767 

representation of local climate dynamics, the fine-scale simulations are still strongly 768 

influenced by any biases in the global simulations used for the boundary forcing (e.g., 769 

Meier et al., 2006). 770 

Common configurations for regional climate model dynamical downscaling 771 

include forcing regional coastal simulations with offshore boundary conditions and 772 

atmospheric forcing from coarse global climate simulations (Curchitser et al., 2005; 773 

Hermann et al., 2009; Powell et al., 2006), forcing high resolution regional-scale coupled 774 

climate models with boundary conditions form coarse global climate simulations (e.g., 775 

Christensen et al., 2007), or forcing a high-resolution global climate model component 776 

with information from coarse coupled model simulation (e.g., Cubasch et al., 1995).  The 777 

coupling of fine-resolution regional simulations with coarse resolution global climate 778 

models can be "one-way", with information passed only from the global scale to the 779 

regional scale (Hermann et al., 2009), or "two-way", with information being passed 780 

between the regional and global scales.  The primary advantage of one-way nesting for 781 

regional ecosystem applications is the global simulation does not need to be rerun to 782 

carry out the regional simulation.  The primary disadvantage is the potential for 783 

inconsistencies to develop between the dynamics of the regional simulation and those 784 

imposed by the global scale simulation.  Inconsistencies are not limited to the dynamical 785 

scales captured by the refined resolution grid but not captured by the coarse global grid.  786 
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Larger scale discrepancies can arise due to the influence of fine scale motions on broader 787 

scale patterns. 788 

Two-way nesting allows the refined solution to influence the global climate 789 

model solution and removes the potential for inconsistencies between the global and 790 

regional solutions.  Targeted use of two-way nesting with high-resolution models in 791 

regions where limited climate model resolution has been linked to model biases (e.g., 792 

Section 3.1.3, eastern boundary current upwelling systems, narrow straits and overflows) 793 

may provide a means for improving global climate simulations.  The primary cost of two-794 

way nesting is that the global simulation must be run in concert with the regional 795 

simulation.  This can be a significant computational burden for studying climate impacts 796 

on regional LMRs.  In addition, while two-way nesting methodologies have been 797 

developed, nesting in a manner that robustly allows for dynamically consistent, non-798 

diffusive, and conservative transfer of properties between grids of different resolutions is 799 

still an area of active research.  800 

 801 

3.1.2: Internal variability versus externally forced changes 802 

 Changes in climate conditions can arise due to changes in the radiative forcing 803 

(referred to as the "forced change") or due to internal variations in the climate system and 804 

the changes evident at any time and place will be a combination of these two sources.  805 

Furthermore the forced change will be due to a combination of natural (e.g., solar, orbital 806 

changes, volcanoes) and anthropogenic sources (e.g., greenhouse gases, many aerosols).  807 

Multiple, or “ensemble”, simulations are often used to study the relative roles of forced 808 

change and internal variability.  In particular, they are useful for assessing when changes 809 
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in a quantity exceed expected variations from climate variability (i.e., to determine when 810 

climate change is detectable).  These ensembles are generally constructed by using 811 

different snapshots from the pre-industrial control run as the initial condition for a 812 

climate projection.  Members of the ensemble represent a family of equally likely 813 

evolutions of the model system under the same forcing.  The average, or ensemble mean, 814 

is usually a better representation of the observed climate over the past century than any 815 

single ensemble member (Reichler & Kim, 2008), but the evolution of the observed 816 

climate system should not be expected to exactly follow any individual ensemble member 817 

or the ensemble mean. 818 

 The relative importance of forced climate changes to internal climate variability 819 

tends to increase at larger spatial and temporal time scales because quantities that 820 

integrate signals over very long space and time scales (e.g., decadal mean global ocean 821 

heat content) are tightly coupled to the net radiative imbalance of the planet.  Conversely, 822 

many variations in regional scale features (e.g., weekly mean discharge of regional 823 

rivers) are expected to be driven primarily by internal climate variations (e.g., ENSO, 824 

PDO, random weather events).  Figure 4 illustrates this tendency by comparing global 825 

mean SST trends (left panel) with those over the North Pacific from a five-member 826 

ensemble using GFDL CM2.1 from 1861-2000.  In the global case, the ensemble 827 

members follow the ensemble mean fairly closely and a warming trend over the century 828 

is apparent.  In the North Pacific, the ensemble members vary greatly around the 829 

ensemble mean and no net warming is apparent. 830 

 Internal climate variability is not always a prominent source of climate variation 831 

at regional scales.  Some hemispheric features, like the Walker Circulation, and east-west 832 
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tropical atmospheric circulation, can be dominated by internal variability that occurs over 833 

many decades to a century (Vecchi et al., 2006).  There are also regions like the central 834 

equatorial Indian Ocean, in which forced century scale changes dominate over the 835 

internal variability (Fig. 5).  Evaluation of the relative roles of the forced signal versus 836 

internal variability should be carried on an application-specific basis.  However, the 837 

strong prevalence of internal variability at regional scales and the fact that century-scale 838 

climate models are not designed to match the phase of internal variability (see discussion 839 

of model initialization in Section 3.1) means that century-scale climate model simulations 840 

provide very weak constraints on regional climate changes on time scales of a few 841 

decades or less. 842 

 843 

3.1.3: Regional model biases 844 

Climate models can have significant departures from observed patterns in 845 

ecosystem-relevant variables (Randall et al., 2007).  For, example, Fig. 6 shows global 846 

SST biases for a control simulation under 1990 radiative conditions of CM2.1 relative to 847 

mean observed SST between 1982-2002.  The overall root mean square error is 1.14, but 848 

biases can be much larger at basin and regional scales.  In some cases, such as the eastern 849 

boundary current upwelling regions, the warm bias of the model is likely linked to the 850 

under-representation of key processes (the formation of tropical low clouds and coastal 851 

upwelling) in coarse climate models.  Others, such as the Southern Ocean warm bias, are 852 

less clearly linked to specific processes and may arise from a suite of interactions and 853 

feedbacks within the AOGCM.  Lastly, some pronounced model biases, such as the > 6 K 854 

model cold bias over a limited region of the Northwest Atlantic, are linked to systematic 855 
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departures in the position of ocean currents.  In this case, the Gulf Stream, passes too far 856 

to the south of this region in this model.  Many of the biases highlighted in Figure 6 and 857 

the overall climate model skill with respect to SST are common across most IPCC AR4 858 

climate models though inter-model variations do exist and are variable-dependent (see 859 

Section 3.1.4; Randall et al., 2007). 860 

One methodology that is often applied to adjust projections for systematic model 861 

biases is to remove the model climatology from the total model response and compute 862 

anomalies.  This anomaly is then added to the observed climatology to create a blended 863 

dataset.  For example, the magnitude of a modeled change in SST in the next century 864 

would be added to the observed mean SST and this would be used to predict LMR 865 

responses in lieu of an unadjusted climate projection that exhibited a mean bias.   866 

There are several issues to consider when assessing the viability of such simple 867 

adjustments.  First, the model bias may reflect an error in the mean climate state or it 868 

could simply arise from expected differences in the phase of the interannual to multi-869 

decadal internal climate variability between century-scale climate simulations and 870 

observation (Section 3.1).  Ensemble simulations (Section 3.1.2) could be used to assess 871 

if differences between the model and the observations could be explained by climate 872 

variability.  Long observational time-series are often required to detect a bias in the 873 

model's mean climate. Second, model biases arise due to potentially complex, non-linear 874 

interactions of the climate system.  Diagnosing the mechanisms underlying climate model 875 

biases is an active area of climate model research and development and attribution to any 876 

single factor is often impossible.  One key assumption when applying a simple bias 877 

correction to the mean climate state that can be assessed is that the mean climate state and 878 
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other climate characteristics (e.g., the magnitude of the predicted change or variance in a 879 

climate variable) are independent.  Calculating the covariance between the model biases 880 

and these other climate characteristics provides one means of assessing the independence 881 

of the mean climate state (McAfee & Russell, submitted).  Even with this test, simple 882 

climate model bias corrections should be applied with caution and the sensitivity of 883 

primary results to these corrections should be analyzed and documented. 884 

 885 

3.1.4: Inter-model spread in climate projections  886 

While climate models share common structures and underlying principles, they 887 

also differ in a myriad of ways, including resolution, grid design, numerical solution 888 

techniques, and the form and parameters chosen for subgrid-scale parameterizations.  It 889 

remains unclear how to best parameterize many important subgrid-scale processes (e.g., 890 

atmospheric convection, cloud microphysical processes, and ocean mixing).  Variations 891 

in these subgrid-scale parameterizations contribute greatly to differences in climate 892 

projections and model biases (e.g., Kim et al., 2008; Liu et al., 2010; Murphy et al., 893 

2007). 894 

Some models will reproduce aspects of the climate system better than others.  895 

Improving the precision and accuracy of climate projections, or improving the ability to 896 

detect and attribute climate change signals, by restricting or weighting climate model 897 

ensembles based on the skill of ensemble members at matching observed patterns in the 898 

present climate state is an active area of research (Hollowed et al., 2009; Pierce et al., 899 

2009; Santer et al., 2009).  Such approaches have proven to be effective for short-term 900 

weather (Raftery et al., 2005) and seasonal predictions (Krishnamurti et al., 2006).  It is 901 
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not necessarily true, however, that climate models with closer agreement to observed 20th 902 

Century climatology should be expected to have a more ‘believable’ response in the 21st 903 

Century.  For example, Jun et al. (2008) found that climate model skill in capturing mean 904 

northern hemisphere summer and winter air temperatures between 1970-1999 were not 905 

generally correlated with a model's ability to simulate the warming trend.  At a more 906 

regional scale, Pierce et al. (2009)  found little relationship between climate projections 907 

of winter temperature over the western United States and model performance.  This lead 908 

Pierce et al. (2009) to the conclude that there was little relationship between the quality of 909 

the model dynamics determining regional patterns in temperature and precipitation and 910 

the dynamics determining anthropogenic climate change signal. In contrast, Giorgi and 911 

Mearns (2002) argue that individually weighting the models in an ensemble can reduce 912 

uncertainty by minimizing the influence of poorly performing models that often represent 913 

outliers.  914 

While the limitations imposed by inter-model spread on regional climate 915 

predictions supports the importance of continued research on model selection and 916 

weighting to improve forecast accuracy and precision at regional scales, such techniques 917 

still require further development and testing.  Any weighting scheme should ideally be 918 

justified by both empirical evidence of increased forecast accuracy and precision on 919 

climate change time scales and a process-level understanding of the dynamical aspects of 920 

the model thought to be deficient in the down-weighted or omitted models.  Testing 921 

hypothesis about the relationship between observed climatology in a parameter and the 922 

validity of the predicted trend can be challenging because, unlike weather prediction, 923 

long time series are required.  However, a multitude of concerted observational efforts 924 
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(Bindoff et al., 2007; Lemke et al., 2007; Trenberth et al., 2007) are beginning to make 925 

this testing more feasible.  In the absence of widely accepted weighting practices, a 926 

chosen weighting scheme should be viewed as an important scientific aspect of a study 927 

and results should be analyzed and presented relative to those obtained from a full 928 

ensemble.  Indeed, there are advantages to larger ensembles that may offset the potential 929 

advantages of weighting models or restricting the model ensemble.  Analysis at both 930 

global (Reichler & Kim, 2008) and regional (Pierce et al., 2009) scales suggests that the 931 

average of many models tends to be closer to observed conditions than any single model. 932 

It must be recognized, however, that averaging yields smoothed representations (in space 933 

and time) of the evolving climate, and for some applications, it may be proper to 934 

introduce variability to produce more realistic climate projections. 935 

 936 

3.2:  Inter-annual to decadal scale climate model predictions 937 

The focus of the century scale simulations described in Section 3.1 is an 938 

assessment of the climate changes under a relatively large change in radiative forcing.  939 

Such simulations project changes in the mean climate and the statistics of climate 940 

variability (i.e., frequency of droughts, etc), but do not predict the detailed time evolution 941 

of the real climate system going forward in time. Such simulations do not start from the 942 

observed state of the climate system, but rather from some simulated state that resembles 943 

the current climate. 944 

Recently efforts have begun to initialize climate models with an estimate of the 945 

observed state of the climate system in order to assess whether climate variations on 946 

interannual to decadal time scales can be predicted (Keenlyside et al., 2008; Pohlmann et 947 
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al., 2009; Smith et al., 2007).  The motivation for such activities rests in observed decadal 948 

scale climate fluctuations and their associated large-scale climatic impacts. For example, 949 

decadal scale fluctuations in the Atlantic have been linked to a host of physical and 950 

ecosystem impacts, ranging from drought in the Sahel region of Africa to ecosystem 951 

changes in the Nordic Seas. It has been recognized that there could be great utility in 952 

developing a capability to predict such fluctuations, although the degree to which 953 

decadal-scale climate prediction is possible is an open scientific question. 954 

Associated with the fifth Assessment Report of the Intergovernmental Panel on 955 

Climate Change (IPCC AR5), a number of modeling centers around the world will 956 

conduct a suite of decadal scale prediction experiments. The various models will be 957 

initialized with estimates of the observed climate system, and then integrated forward in 958 

time to attempt predictions of decadal scale climate fluctuations. Much of the potential 959 

predictability lies in the state of the ocean, and thus ocean temperature and salinity will 960 

be key variables for initializing the models. The technique for initializing these 961 

simulations will vary among the modeling groups. These techniques include using output 962 

from (a) ocean-only assimilation systems, (b) fully coupled ocean-atmosphere 963 

assimilation systems, (c) and ocean simulations forced by estimates of past surface flux 964 

forcing. In addition, some groups employ an anomaly technique in which observed 965 

anomalies (rather than the full fields) are put into the model in an attempt to minimize the 966 

impact of model bias on the predictions. All of these techniques start predictions from 967 

estimates of the observed state of the climate system while attempting to minimize the 968 

inevitable shock to the system that comes from inserting observations into the model. In 969 
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addition to initialization from the observed state, all of the model simulations should 970 

include the effects of time-varying radiative forcing.  971 

Hindcasts will also be conducted in which the models are initialized from past 972 

observed states. The hindcasts are then compared to observations for the last several 973 

decades in order to evaluate any potential skill in such decadal predictions. However, the 974 

changing nature of the climate observing system over that period will complicate 975 

interpretation of these results. In particular, since a substantial component of any decadal 976 

scale predictability in the climate system may arise from the ocean, changes in the ocean 977 

observing system may be crucial. The advent of ARGO observations over the last decade, 978 

which provide a near global set of observations of temperature and salinity over the top 979 

2000 meters of the ocean, may be crucial for achieving reliable decadal predictions. 980 

The outcome of these suites of experiments will be an initial assessment of the 981 

predictability of the climate system on decadal time scales, as well as an initial set of 982 

such predictions. As part of the international protocol for these experiments, the output 983 

from these models will be made publicly available. It is hoped that as models and 984 

observing systems improve we will be able to increase our ability to predict decadal scale 985 

climate fluctuations, and that such predictions will be of use in assessing any ecosystem 986 

impacts. 987 

 988 

3.3: Earth system model simulations 989 

One of the primary simplifications of the climate system in the physical climate 990 

models described in Section 3.1 is that the dynamics of the land and ocean biosphere and 991 

carbon reservoirs are not explicitly modeled.  Fluxes between the atmosphere, ocean and 992 
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land carbon reservoirs significantly impact the accumulation of CO2 in the atmosphere 993 

(Sabine et al., 2004).  Physical climate models must  rely upon imposed scenario-based 994 

atmospheric CO2 trajectories that include assumptions concerning the behavior of the 995 

land, ocean, and atmospheric carbon reservoirs.  Earth System Models (ESMs) address 996 

this limitation by adding explicit models of the terrestrial and oceanic biosphere to the 997 

ocean, ice, atmospheric, and land hydrology components of the physical climate models 998 

and tracking the carbon in each reservoir.  This approach “closes” the carbon cycle:  999 

given a set of carbon emissions and an initial carbon inventory, ESMs dynamically 1000 

resolve the partitioning of carbon between the land, ocean, and atmosphere; model the 1001 

transformations within each component; and conserve total carbon. 1002 

ESMs offer two potentially substantial advantages over physical climate models 1003 

for predicting the response of LMRs to climate change.  First, the explicit ocean 1004 

biosphere provides estimates of a wide range of ocean chemical and biological properties 1005 

(e.g., oxygen, alkalinity, primary and secondary production).  This allows the direct 1006 

simulation of important ecological phenomena such as ocean acidification, hypoxia, and 1007 

anoxia.  Also, biological production metrics often have stronger empirical and 1008 

mechanistic links to LMRs than physical properties (Iverson, 1990; Ware & Thompson, 1009 

2005).  However, present formulations of marine ecosystem dynamics within ESMs 1010 

emphasize broad global-scale patterns in carbon and nutrient cycling.  They feature 1011 

detailed resolution of nutrient dynamics, primary production and phytoplankton 1012 

physiology, but relatively simple representations of marine food web dynamics (Aumont 1013 

et al., 2003; Moore et al., 2004).   Addressing this limitation within ESMs by making 1014 

food web interactions more explicit and comprehensive would further enhance their 1015 
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utility for LMR applications by allowing the flow of energy to higher trophic level 1016 

organisms (e.g., fisheries) in the ocean to be diagnosed in more detail.  However, it is 1017 

also notable that marine ecosystems models within ESMs are designed for robust global 1018 

performance and may thus omit aspects of regional ecosystem dynamics that may be 1019 

relevant to LMRs.  Computational advances should ameliorate this limitation but ESMs 1020 

will likely lag behind regional model simulations in terms of the extent to which detailed, 1021 

region-specific ecology can be captured. 1022 

A second potential advantage of ESMs for LMR applications is the ability to 1023 

better resolve the dynamics governing exchanges of carbon and nutrients between land 1024 

and the coastal ocean which are strongly impacted by land-use, vegetation types, and 1025 

precipitation patterns (Green et al., 2004; Seitzinger et al., 2005).  Estuaries modulate 1026 

these exchanges and provide essential habitats for many LMRs, including the early life 1027 

stages of many species harvested on the continental shelf or in oceanic waters (see 1028 

Section 2.1).  As is the case with present ocean ecosystem models in ESMs, present 1029 

terrestrial biosphere models emphasize very broad-scale land-use and vegetation patterns 1030 

that shape global climate - only very large watersheds are resolved, and localized human 1031 

impacts are omitted.  However, as computational obstacles are removed, ESMs provide 1032 

the necessary framework to comprehensively simulate the impacts of climate change and 1033 

human activities on estuarine systems and the LMRs they support. 1034 

 1035 

4. Case Studies 1036 

 Sections 2 and 3 have provided broad overviews of the dynamics of LMRs and 1037 

climate models.  In this section, we rely upon this baseline of common understanding to 1038 
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present examples of the coupling of predictive LMR models and climate models to make 1039 

statements about the impact of climate on LMRs.  These case studies illustrate a range of 1040 

potential approaches, including direct use of climate model output, statistical 1041 

downscaling, and dynamical downscaling.  A range of LMR models are also used, 1042 

including simple extensions of traditional stock assessment models to relatively 1043 

sophisticated and highly resolved ecosystem models.   Each  case study includes a 1044 

description of the coupling of LMR and climate models and a summary of the main 1045 

results. and an identification of the main limitations. 1046 

As with the climate projections, it is difficult to directly assess confidence in these 1047 

LMR projections because they are made over many decades and for a period over which 1048 

there are no precise past analogs (Section 3, Randall et al., 2007).  Confidence must 1049 

instead be built upon the degree to which models rely on robust and well-supported 1050 

ecological and physiological relationships and on the ability of models to match past 1051 

observed LMR responses to climate.  This process is made difficult by both the 1052 

complexity of ecosystem dynamics and models (Section 2.1, 2.3) and the limitations of 1053 

the observations (Section 2.3).  While ensemble methods (Section 3.1.2) provide a means 1054 

of exploring some aspects of projection uncertainty, there is a general need for more 1055 

quantitative measures of confidence for both climate and LMR projections (see Section 1056 

6).  For now, each of the case studies below will conclude with a qualitative discussion of 1057 

projection limitations. 1058 

 1059 

4.1 Projections of global fisheries biodiversity and catch 1060 
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Cheung et al. (2009; 2010) used IPCC-class physical climate models to examine 1061 

the questions of how marine climate change may affect global patterns of marine 1062 

biodiversity and potential fisheries catch. The global pattern of marine biodiversity is 1063 

determined by the biogeography of marine species which is strongly related to physical 1064 

conditions of the ocean.  Moreover, maximum potential catch of a fish stock is shown to 1065 

be dependent on the range area of the stock and the primary production therein.  Climate 1066 

change may lead to changes in ocean productivity as well as the range of fish stocks 1067 

resulting in a shift in the global pattern of potential fisheries catch. Models were thus 1068 

developed and applied to project future changes in marine biodiversity and fisheries catch 1069 

in the world ocean (Cheung et al., 2009; 2010).  1070 

A dynamic bioclimate envelope model was developed to examine the potential 1071 

ecological responses of a wide variety of marine animals (over 1,000 species of marine 1072 

fish and invertebrates) (Cheung et al., 2009; 2008a). In this model, current species 1073 

distribution of the studied animals, expressed as relative abundance in a 0.5o latitude x 1074 

0.5o longitude grid of the world ocean, are predicted by an algorithm described by Close 1075 

et al.(2006) with modification from Lam et al. (2008).  Biological data were obtained 1076 

from global databases such as FishBase (www.FishBase.org), SeaLifeBase 1077 

(www.SeaLifeBase.org) and the Sea Around Us database (www.seaaroundus.org). 1078 

Preferences to environmental conditions, such as temperature, salinity, habitat types, are 1079 

inferred from overlaying distribution maps with gridded physical condition data of the 1080 

ocean as predicted by one of the IPCC class coupled GCM - NOAA’s GFDL CM2.1 1081 

(Delworth et al., 2006). Changes in distribution of relative abundance of each studied 1082 

species were then simulated using a dynamic bioclimate envelope model developed by 1083 
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Cheung et al. (2008a). This model simulated annual changes in distribution of the studied 1084 

species forced by changes in physical conditions including sea water temperature (surface 1085 

and bottom), salinity, surface currents and sea-ice extent that were projected from the 1086 

NOAA’s GFDL CM 2.1. Specifically, the movement of the distribution range was 1087 

determined by the suitability of each 0.5o x 0.5o cell relative to the species’ environmental 1088 

preferences, larval dispersal along ocean currents and migration of adults. 1089 

Based on the outputs from the dynamic bioclimate envelope model, Cheung et al. 1090 

(2009) projected that biodiversity impact would be highest in the high-latitude, 1091 

particularly the Polar region, the tropics and semi-enclosed seas (Fig. 7). Such impact is 1092 

expressed in terms of species turnover (i.e., sum of species invasion and local extinction 1093 

from an area). Specifically, invasion is most intense in the Arctic and the Southern Ocean 1094 

while local extinction concentrates in the tropics, semi-enclosed seas and the sub-polar 1095 

regions. Moreover, the distribution ranges of fish and invertebrates are projected to shift 1096 

generally polewards. 1097 

In addition, Cheung et al. (2010) used scenarios of future changes in physical and 1098 

biological conditions of the ocean to predict how maximum potential catch may re-1099 

distribute as a result of shifts in the distribution of exploited species and primary 1100 

productivity. These predictions are based on empirical relationship between potential 1101 

catch, habitat area and primary productivity (Cheung et al., 2008b) and predict a decline 1102 

in potential catch if species’ habitat or primary productivity therein decreases, and vice 1103 

versa.  Changes in species distribution range were projected by the dynamic bioclimate 1104 

envelope model (Cheung et al., 2009; 2008b) while primary productivity was predicted 1105 

by empirical equations (Sarmiento et al., 2004) with physical data projected by the 1106 
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NOAA’s GFDL CM 2.1. In spite of all caveats and a number of scientific uncertainties, a 1107 

clear pattern emerged, i.e., maritime countries located in low latitudes (e.g., Malaysia, or 1108 

Indonesia) will lose potential yield (and their fisheries will suffer), while higher latitude 1109 

countries (e.g., Iceland and Norway), will gain potential yield and their fisheries might 1110 

benefit (Cheung et al., 2010).  1111 

Outputs from the GCM are critical for the global projections of climate change 1112 

impacts on marine biodiversity and fisheries; however, there are various uncertainties 1113 

resulted from limitations imposed by GCM outputs used by the study.  The climate model 1114 

used by Cheung et al. (2009; 2010) is relatively reliable at predicting long-term and large 1115 

scale trends and patterns of changes in ocean conditions. However, model skill decreases 1116 

at smaller spatial and temporal scales (Section 3). The projected biodiversity and fisheries 1117 

impacts, which are driven by the GCM outputs, inherit such properties. On the other 1118 

hand, the targeted temporal and spatial scales for the global models of marine 1119 

biodiversity and fisheries parallel those for the GCM. Thus, scale issues of the GCM 1120 

outputs do not invalidate the main conclusions from these analyses. A greater 1121 

impediment to the analyses on marine biodiversity and fisheries is the limited 1122 

representation of dynamics in coastal and continental shelf regions by the GCM (Section 1123 

3.1.1, Fig. 3). These are particularly important for distribution of many exploited marine 1124 

species and their potential catch. This renders projections of biodiversity at scales finer 1125 

than the broad latitudinal patterns discussed above and fisheries impacts in coastal region 1126 

uncertain. Moreover, some of the predicted physical variables that are important to 1127 

determine habitat suitability for many marine species, such as sea bottom temperature, 1128 

may be particularly uncertain.  Bioclimate models also have limitations (Brander, 2009).  1129 
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For example, the present bioclimate envelope model does not account for species 1130 

interactions and potential food web changes that may also impact fisheries biodiversity 1131 

and ranges. Currently, a new version of the dynamic bioclimate envelope model is being 1132 

developed that account for effects of ocean biogeochemistry such as oxygen level and pH 1133 

on the eco-physiology and distribution of marine fish.  Such a model would require the 1134 

new generation of Earth System Models (ESMs, Section 3.3) which have explicit 1135 

biogeochemical components for predicting such variables at a global scale. 1136 

 1137 

4.2 Bigeye tuna in the Pacific Ocean 1138 

Bigeye tuna (Thunnus obesus) are large (up to 200 kg) highly migratory fish that 1139 

occupy tropical and temperate oceans and can live for over 10 years.  The broad ocean-1140 

basin scales of bigeye tuna habitat and migration are consistent with those resolved by 1141 

climate models.  Pacific Ocean bigeye tuna populations support a large and extremely 1142 

valuable fishery.  Landings over the last 10 years in the tropical Pacific have been valued 1143 

at between 500 million to 1 billion US dollars (www.seaaroundus.org).   1144 

The behavior, life cycle, and survival of bigeye tuna has been related to a range of 1145 

environmental and ecological factors.  Larval and juvenile stages need warm water (> 25o 1146 

C) to maintain their body-temperatures.  However, as they become larger, they must 1147 

move toward cooler habitats to prevent overheating (Brill, 1994; Holland et al., 1992).  1148 

Bigeye tuna also avoid regions where dissolved oxygen falls below 1 ml/L.  The diet of 1149 

adult bigeye tuna includes a large spectrum of micronekton ranging in size from several 1150 

millimeters (e.g., euphausids and amphipods) to several centimeters (shrimps, squids, and 1151 

fish, including their own juveniles).  Movement during much of the adult stage is dictated 1152 
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by the suitability of a habitat’s food resources, temperature and oxygen.  Adult tuna must 1153 

return to warmer waters to spawn, and spawning success depends on temperature, the 1154 

availability of food for larvae (often microzooplankton), and the abundance of predators 1155 

of larvae (large zooplankton and micronekton).  Mortality varies by life stage and 1156 

includes both natural losses (predation, starvation, disease, senescence) and fishing 1157 

mortality. 1158 

Mechanistic predictions of the impact of climate change on bigeye tuna requires a 1159 

model capable of capturing the range of interactions with the ecosystem and the 1160 

environment outlined above.  Lehodey et al. (Lehodey et al., in press)  combined a 1161 

climate model (IPSL-CM4, Marti et al., 2006), which included an embedded 1162 

biogeochemical model (PISCES, Bopp et al., 2001), with the latest version of the Spatial 1163 

Ecosystem and Population Dynamics Model (SEAPODYM, Lehodey et al., 2008; Senina 1164 

et al., 2008) to provide preliminary forecasts of the response of Pacific bigeye tuna to 1165 

climate change (in absence of fishing) and to diagnose the underlying dynamics of the 1166 

response.  SEAPODYM is designed as a general framework for integrating biological 1167 

and ecological knowledge of tuna species and other top-predator species with a 1168 

comprehensive description of the pelagic ecosystem, including several functional groups 1169 

of micronekton (Lehodey et al., 2010).  The IPSL CM4 climate model provided physical 1170 

fields required by both PISCES and SEAPODYM (e.g., temperature, currents), the 1171 

biogeochemical model provided estimates of oxygen and primary production to 1172 

SEAPODYM, and SEAPODYM provides estimates of both the adult tuna forage base 1173 

(i.e., micronekton) and size and age structured tuna populations in space and time.  The 1174 

biomass of each cohort within the tuna population is tracked as a spatially-distributed 1175 
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density of fish using a system of advection-diffusion-reaction equations.  The 1176 

SEAPODYM calculations are done “off-line”, monthly inputs from the IPSL climate 1177 

model and the PISCES biogeochemical model are used to drive SEAPODYM, but there 1178 

are no feedbacks from SEAPODYM to PISCES or the IPSL climate model.  This "off-1179 

line" provides a computational savings by not requiring the global simulations to be re-1180 

run to force SEAPODYM though the lack of feedbacks between SEAPODYM and 1181 

PISCES can be a source of inconsistencies between the two models.   1182 

As far as possible, the mechanisms within SEAPODYM rely on relative rather 1183 

than absolute parameterization.  For example, movements are based on gradients in 1184 

habitat.  The ratio between primary production (the proxy for larval food) and production 1185 

by mid-trophic level organisms (consumers of larvae) is used to represent the tradeoff 1186 

between availability of prey and exposure to predators in defining favorable spawning 1187 

habitat.  This approach minimizes the impact of magnitude biases in the IPSL-1188 

CM4/PISCES projection while making the model’s representation of spatio-temporal 1189 

gradients more critical.         1190 

Though SEAPODYM contains a relatively small number of parameters (i.e., 15 to 1191 

describe the entire spatial population dynamics of one species), some have limited 1192 

constraints (e.g., natural mortality).  The model was thus calibrated against fisheries catch 1193 

data using data assimilation techniques (Senina et al., 2008) for the historical period and 1194 

with several environmental reanalyses from coupled ocean-biogeochemical models..   1195 

Lehodey et al. (in press) then used the IPCC SRES A2 projection of the IPSL climate 1196 

model to make a preliminary assessment of the bigeye tuna response to climate change in 1197 

the 21st century.  Spawning habitat, which requires high temperatures, was predicted to 1198 
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expand in the eastern tropical Pacific (ETP) and in sub-tropical areas (Fig. 8, left panels).  1199 

The adult feeding habitat also strongly improves in the ETP (Fig. 8, right panels).  This is 1200 

due to an increase in dissolved oxygen in subsurface waters that increases the 1201 

accessibility of micronekton function groups that reside deeper in the water column to 1202 

feeding bigeye tuna adults.  Conversely, in the western tropical Pacific (WTP) the 1203 

temperature becomes too warm for bigeye spawning and larval concentrations near the 1204 

equator decrease (Fig. 8, left panels).  This is partly compensated for by an increase in the 1205 

larval biomass in sub-tropical regions.  However, adult mortality also increases in the 1206 

WTP due to excessively warm surface temperatures, decreasing oxygen concentration in 1207 

the sub-surface and less food.  These conditions drive the movement of surviving fish to 1208 

the ETP and the adult biomass in the WTP began  to decline by the end of the century.  1209 

Fishing in the WTP is likely to exacerbate this decrease if it is continued over the next 1210 

century.   1211 

There were several challenging aspects of the coupling between climate models 1212 

and highly mechanistic ecosystem models described in this case study.  First, the 1213 

calibration of the SEAPODYM model used for projection was done using fisheries catch 1214 

data from 1985-2000 and compared against results from the IPSL CM4 model during the 1215 

historical period.  As described in Section 3, ENSO timing during the historical period of 1216 

century-scale climate projections will not match the timing of ENSO events from 1985-1217 

2000 (see section 5 for further discussion of calibration using global ocean-ice 1218 

simulations forced by atmospheric reanalysis which may ameliorate this issue).  Second, 1219 

while the use of the highly mechanistic SEAPODYM model provided additional insights 1220 

into the dynamics driving simulated changes in bigeye tuna distributions, it also imposed 1221 
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additional computational demands (e.g., spatially explicit tuna calculations) that restricted 1222 

the number of climate simulations considered and the exploration of uncertainty.  This is 1223 

a common trade-off when using more complex ecological modeling approaches (Section 1224 

2).  Lastly, while SEAPODYM includes many foodweb interactions and constraints due 1225 

to physiological responses under different feeding habitats and food requirements, 1226 

notable omissions remain.  For example, feedbacks of fish communities on 1227 

biogeochemical dynamics are not resolved. 1228 

 1229 

4.3 Climate impacts on Alaskan ecosystems and the Northern rock sole 1230 

The waters off the coast of Alaska support the largest groundfish fishery in the 1231 

United States as well as large commercial fisheries for salmon, herring, Pacific halibut 1232 

and Tanner and King crabs.  The groundfish fisheries are carefully managed and none are 1233 

classified as overfished (Worm et al., 2009).  However, notable ecosystem shifts in 1234 

response to climate variability and change have been observed in Alaskan waters 1235 

(Grebmeier et al., 2006) and incorporating climate information into resource management 1236 

is essential for continued effective management.  A number of approaches are being 1237 

pursued, including statistical (A'Mar et al., 2009; Hollowed et al., 2009) and dynamical 1238 

downscaling (Sigler and Harvey, 2009).  This case study will focus on general aspects of 1239 

the approaches being applied for climate impacts on Alaskan ecosystems and the 1240 

particular example of Northern rock sole on the eastern Bering Sea shelf presented by 1241 

Hollowed et al. (2009).  1242 

Hollowed et al. 2009 proposed a framework for modeling fish and shellfish 1243 

responses to future climate change that is being applied in Alaskan waters.  There are six 1244 
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steps that are briefly described here (see Hollowed et al., 2009 for details).  First, 1245 

mechanisms that explain environmental influences on LMR population dynamics are 1246 

identified;  second, the environmental variables for which projections are needed to 1247 

model the LMR response are identified;  third, the feasibility of using IPCC models to 1248 

predict these variables is assessed;  fourth, IPCC models hindcasts of the variable(s) are 1249 

compared with observed 20th century conditions to select and weigh IPCC models;  fifth, 1250 

projections of the environmental variables from the weighted ensemble of IPCC models 1251 

are incorporated into stock projection models; and sixth, the effects of changing 1252 

environmental conditions on harvest strategy are evaluated. 1253 

A notable aspect of the proposed framework is the weighting of IPCC models 1254 

based on their fidelity with observed conditions for the environmental variables being 1255 

projected during the historical period of the climate simulations.  This is based on the 1256 

understanding that different models have different strengths and weaknesses, and the 1257 

assertion that better models for particular parameters and particular regions should 1258 

receive greater consideration.  The procedure suggested by Hollowed et al. (2009) is an 1259 

adaptation of the method developed by Raftery et al. (2005) for short-term weather 1260 

forecasts. The weights can reflect multiple criteria, including the ability to reproduce the 1261 

mean values, variances, trends and seasonality.  However, as discussed in Section 3.1.4, a 1262 

linkage between climate model fidelity to historical observations at regional scales and 1263 

the quality of climate change predictions over century-scales has not been established.  1264 

The weighting scheme suggested by Hollowed et al. (2009) thus continues to be 1265 

evaluated against observations and approaches using the full ensemble in order to refine 1266 
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the methodology, assess the added value of model weighting, and test the rationale for the 1267 

weights. 1268 

Hollowed et al. (2009) provided an example application of this framework to 1269 

Northern rock sole (Lepidopsetta polyxystra) in the eastern Bering Sea.  Northern rock 1270 

sole spawn between February and March and larvae are carried by ocean currents from 1271 

April to June.  Wilderbuer et al. (2002) found that wind-driven advection of larvae 1272 

toward highly productive near-shore nursery areas coincided with above-average 1273 

recruitment.  This suggests that the impact of climate change on northern rock sole is 1274 

linked to climate-driven changes in wind patterns.  The ensemble of IPCC models used to 1275 

predict rock sole was first restricted to 12 IPCC AR4 models that replicate the essential 1276 

characteristics of the Pacific Decadal Oscillation (Overland & Wang, 2007).  These 12 1277 

models were then weighted according to their ability to model mean April-June winds on 1278 

the Bering Sea shelf and the interannual variance in seasonal mean winds (Fig. 9A) and 1279 

these were used to project winds out to 2050.  Winds were then converted to an ending 1280 

longitude for the surface drifting larvae based on a simple transport model that indicates a 1281 

slight tendency toward increased shoreward transport (Fig. 9B).  The future production of 1282 

rock sole was then predicted using an empirical recruitment function with environmental 1283 

terms added.  After accounting for recruitment in a given wind regime, the analysis 1284 

suggested that rock sole would not be substantially affected by climate-driven changes in 1285 

larval dispersal patterns. 1286 

There were several challenging aspects and limitations associated with this 1287 

method of the coupling between climate models to stock projection models in addition to 1288 

the aforementioned challenges associated with model weighting.  As was the case for the 1289 
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stock-recruitment relationships discussed in Section 2.3.1, a considerable amount of 1290 

recruitment variability cannot be explained by the emergent relationships between the 1291 

environment and Northern Rock Sole recruitment (A'Mar et al., 2009; Hollowed et al., 1292 

2009).  The analysis was only possible because the variables needed to predict 1293 

recruitment were reasonably well estimated by IPCC-class climate models.  However, 1294 

proxy variables may be necessary in many cases (e.g., see Section 4.4).  The weighting 1295 

process becomes more complex when multiple predictor variables are needed.  Lastly, the 1296 

approach could not address the potential impacts of and uncertainties in fishing patterns, 1297 

management, and the socioeconomic factors that govern them. 1298 

 1299 

4.4 Atlantic croaker along the east coast of the United States 1300 

Hare et al. (2010) used a statistical downscaling approach to simulate the effect of 1301 

climate change on the abundance and distribution of Atlantic croaker along the eastern 1302 

seaboard of the United States.  The Atlantic croaker is a relatively small (1-2 kg as an 1303 

adult), demersal fish inhabiting inshore coastal waters.  Atlantic Croaker supports an 1304 

active yet highly variable commercial and recreational fishery in this region, with yearly 1305 

landings of ~8000 metric tons, worth an estimated US $9 million (NMFS, 2008). 1306 

Variability in Atlantic croaker catch is thought to be primarily due to differences 1307 

in the survival of estuarine juvenile stages: cold water temperatures lead to lower juvenile 1308 

survival and ultimately lower recruitment (Hare & Able, 2007).  This has been linked to 1309 

temperatures falling below the physiological thermal tolerance of juvenile croaker (see 1310 

also Lankford & Targett, 2001; Norcross & Austin, 1981)  Estuarine dynamics are 1311 

generally not resolved or very coarsely resolved in the physical climate models used in 1312 
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IPCC AR4 (Section 3.1.1).  However, estuarine water temperatures are closely linked to 1313 

surface air temperatures in the winter owing to efficient heat exchange in these shallow 1314 

systems (Hettler, 1992; Roelofs & Bumpus, 1953; Taylor et al., 1957).  Winter surface air 1315 

temperatures are strongly coherent across the eastern United States (Joyce, 2002), thus 1316 

providing a large scale indicator of estuarine conditions that is resolved by climate 1317 

models.  Past estimates of Atlantic croaker recruitment were related to minimum winter 1318 

air temperatures from a historical reanalysis of atmospheric temperature (Figure 10A).  1319 

This relationship was then incorporated into the stock-recruitment function (eq. 2) of an 1320 

extended stock assessment model (ESAM, Section 2.3.1).  This ESAM was used to 1321 

project croaker populations forward for three emissions scenarios used in IPCC-AR4 1322 

(commit, B1 and A1B).  These scenarios correspond to atmospheric CO2 increases to 1323 

350, 550, and 720 ppm by the end of the 21st century. 1324 

The analysis of Hare et al. (2010) focused on Atlantic croaker stocks in the mid-1325 

Atlantic region of the United States.  While surface air temperatures are broadly coherent 1326 

over the eastern US, there is considerable model bias and inter-model spread at this 1327 

regional scale (Sections 3.1.3-3.1.4).  Two steps were taken to address these issues.  First, 1328 

climate models were bias corrected by removing the mean surface air temperature bias in 1329 

retrospective simulations.  Second, the simulations from an ensemble of 14 climate 1330 

models with all three emissions scenarios and retrospective results available were used to 1331 

test the robustness of findings.  A range of fishing mortalities (F) was also included in the 1332 

simulations.  The effect of climate change was assessed by averaging predicted changes 1333 

between 2010-2100 and comparing them with present values, which removes the effects 1334 

of climate variability and isolates the climate change signal which AR4 models simulate 1335 
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deterministically (Section 3.1.1).  At current levels of fishing mortality (F=0.1 year-1), 1336 

climate change is predicted to increase the spawning stock biomass of croaker in this 1337 

region (Fig. 10B).  The predicted increase in biomass becomes smaller as F increases, but 1338 

generally ranges between 60-100% of current levels, which translates to a 30-100% 1339 

increase in the maximum sustainable yield (Fig. 10C). These results suggest a dramatic 1340 

change in biological reference points used for management as a result of climate change.  1341 

Hare et al. (2010) also developed an empirical spatial distribution (habitat) model 1342 

for croaker that predicts the center and northern extent of range and spawning stock 1343 

biomass based on winter surface air temperatures and spawning stock biomass.  This 1344 

model was forced with the same 14 model, 3 scenario ensemble described above and the 1345 

abundance output from the ESAM.  A northward shift of 50-100 km in the population 1346 

was predicted. An issue not addressed in this study is potential changes in Atlantic 1347 

croaker in the southern part of the range; decreases and northward shifts in the south may 1348 

be balanced by increased productivity further north. 1349 

The Hare et al. (2010)  case study provides an example of the use of statistical 1350 

downscaling, ensemble approaches, and simple bias corrections to adapt IPCC-class 1351 

climate models for assessing the impact of climate change on Atlantic croaker.  The 1352 

translation of predicted responses to metrics presently used in management (i.e., Fig. 10c) 1353 

is particularly noteworthy and illustrative of the importance of incorporating climate 1354 

information into management.  The primary limitation of the analysis is that both the 1355 

ESAM and distribution model rely on empirical relationships between basic, large-scale 1356 

environmental variables and complex emergent LMR responses.  As discussed in Section 1357 

2, such empirical relationships can break down.  Greater mechanistic resolution of the 1358 
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interactions between croaker and coastal and estuarine processes could enhance the 1359 

analysis and reveal new patterns of change.  This would require enhancements to both the 1360 

croaker and climate models.  However, the mechanistic underpinning of the key 1361 

relationships used in this study – that between winter air temperature and estuarine water 1362 

temperature, and that between estuarine water temperature and juvenile survival, have 1363 

been examined in both the laboratory and the field (reviewed by Hare & Able, 2007) and 1364 

suggest that the mechanisms underlying the couple population-climate model may remain 1365 

robust. 1366 

 1367 

4.5 Scenarios for North Atlantic cod over the next 20-50 years under climate change 1368 

The ICES/GLOBEC Cod and Climate Change program held a workshop in June 1369 

2008 to develop projections of possible stock dynamics for cod over the next 20-50 years 1370 

(Drinkwater et al., 2010).  Experts in global and regional climate modeling, including 1371 

decadal prediction, provided climate projections to drive models of biological dynamics, 1372 

taking into account not only the direct effects on cod but also indirect effects on prey 1373 

(including zooplankton), predators and competitors. Several types of model (mechanistic 1374 

coupled physical-biological, statistical multivariate autoregressive, mechanistic 1375 

stochastic) were applied to reconstruct past time series of observations and to project 1376 

future changes. The overall conclusion from the workshop was that we are not yet able to 1377 

produce credible projections of cod stock dynamics for the next 20-50 years due to 1378 

limitations in global and regional climate models and to inadequate knowledge of 1379 

biological responses. 1380 
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An analysis of changes in distribution of North Sea cod over the past century 1381 

explored the effects of fishing, temperature, winds and other environmental variables. 1382 

Distribution changes have been large, as shown by fishing surveys and commercial 1383 

catches, however despite good information on climate and other possible factors, it is not 1384 

possible to choose among a number of plausible explanations (climate, fishing pressure, 1385 

meta-population dynamics, biological interactions with prey fields). Our inability to 1386 

explain such past patterns of change in a well studied area mandates caution with regard 1387 

to the credibility of future projections, even if we had reliable regional climate 1388 

projections, due to biological and environmental complexities. 1389 

The Baltic Sea provides another regional example that illustrates the type of 1390 

insight to be gained from effective linking of climactic and biological models while also 1391 

revealing the limitations of present models. Climate projections for the Baltic in the 21st 1392 

century were based on an assessment using dynamic and statistical downscaling (BACC, 1393 

2007). A stochastic food web model (Lindegren et al., 2009) was used to quantify the 1394 

interactions between the three major fish species in the Baltic (cod, sprat and herring) as 1395 

well as their prey, major environmental drivers and fishing pressure. Salinity plays a 1396 

greater role than temperature in the biological response of cod in the Baltic and the 1397 

projected changes in salinity show significant differences, depending upon which global 1398 

model is used to force the regional scenarios (Meier et al., 2006). A significant decrease 1399 

in salinity (outside the present day climatic variability) is found only for the runs forced 1400 

by one AOGCM (ECHAM4), which is also the only AOGCM showing statistically 1401 

significant changes in windfields in this region. The pattern and strength of wind forcing 1402 

and the magnitude of precipitation are critical for Baltic salinity and are not represented 1403 
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consistently or in detail in AOGCMs. The likelihood that cod will no longer be able to 1404 

reproduce in the Baltic depends critically on whether and by how much the salinity 1405 

decreases. The stochastic food web model provides valuable insight into fisheries 1406 

management strategy that may prevent cod biomass from dropping below the limit 1407 

reference value as salinity declines (Lindegren et al., 2010, Fig. 11), but the likelihood of 1408 

such a salinity decline cannot be quantified from current climate models. 1409 

The Baltic is a particularly difficult enclosed sea to model, but it illustrates some 1410 

of the problems in coupling from global to regional scales and incorporating the variables 1411 

(in this case salinity) that play a dominant role in the biological dynamics. AOGCMs do 1412 

not adequately reproduce the present climate for this region and although it is possible to 1413 

choose from among the AOGCMs those which give a better fit, such a selection would be 1414 

more credible if based on valid structural reasons and more evidence supporting the 1415 

hypothesis that a better fit to regional dynamics implies a better estimate of climate 1416 

change trends (Section 3.1.4).  The two major modes of variability over the Atlantic 1417 

Ocean over the last century, the Atlantic Multidecadal Oscillation (AMO) and the North 1418 

Atlantic Oscillation (NAO), are represented in GCMs but their phasing and variability do 1419 

not match the observed climate well for purposes of short term regional forecasting. 1420 

(Randall et al. 2007).  Models that assimilate recent climate data (and include the decadal 1421 

modes) show useful forecasting skill, at least over periods of a few years (e.g., Smith et 1422 

al., 2007, Section 3.2) and could provide guidance for fisheries management on likely 1423 

trends in fish stock dynamics. 1424 

 1425 

4.6 End-to-end model of sardine and anchovy 1426 
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Landings of sardines show synchronous variations off Japan, California, Peru, and 1427 

Chile, with populations flourishing for 20 to 30 years and then practically disappearing 1428 

for similar durations; periods of low sardine abundance have coincided with increases in 1429 

anchovy populations (Lluch-Belda et al., 1989; 1992; Schwartzlose et al., 1999). The 1430 

landings data have been related to the low-frequency component of different climate 1431 

series, including the PDO and the NAO (Chavez et al., 2003) and to the low-frequency 1432 

signature in global ocean temperature (Tourre et al., 2007). Better understanding of the 1433 

mechanisms underlying these historical low-frequency fluctuations will provide critical 1434 

information for evaluating the skill of coupled biophysical models and for forecasting 1435 

future effects of climate change on these important LMRs.   1436 

As part of ongoing project, an end-to-end model is being developed for sardine 1437 

and anchovy in the California Current ecosystem. While this effort is in a proof of 1438 

principle phase, it is included here to illustrate a likely direction that modeling climate 1439 

effects on LMRs may take over next 10-20 years.  The approach is to fuse the ROMS 1440 

(Regional Oceanographic Modeling System, Shchepetkin & McWilliams, 2005) 1441 

circulation model, the NEMURO-NPZ lower trophic level model (Kishi et al., 2007), a 1442 

full life-cycle individual-based model that simulates multiple fish species (Rose et al., 1443 

1999), and a bioeconomics model of the fishing fleet. Simulations for 1948 to 2006 are 1444 

underway, which include historical variation in climate and several ENSO events. All of 1445 

the submodels can be solved simultaneously, and downscaled results from AOGCMs can 1446 

be used as input to the ROMS model, thereby allowing true climate to fishers simulations 1447 

and permitting, if necessary, for explicit representation of feedbacks among all of the 1448 

submodels. The ultimate goal is to be able to realistically simulate the relative effects of 1449 
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bottom-up (climate-induced), wasp-wait (food web), and top-down effects (predation by 1450 

apex LMRs; fishing) (Cury et al., 2008) on key middle-level forage fish species in the 1451 

ocean food web. 1452 

 1453 

5. Recommended Practices 1454 

The previous sections of this paper have illustrated a broad range of issues 1455 

surrounding and strategies for using IPCC-class climate models to predict the impacts of 1456 

climate change on LMRs.  Each strategy has strengths and weaknesses and the best 1457 

approach will be problem-specific, but it is possible to provide general guidelines and 1458 

highlight critical considerations for identifying effective approaches.  A first step is to 1459 

ensure that the LMR prediction objectives are consistent with the capabilities and 1460 

objectives of IPCC-class climate models.  In most cases, this consistency means multi-1461 

decadal to century-scale projections of climate change impacts on LMRs due to 1462 

greenhouse gas accumulation in the atmosphere (Section 3.1). Spatially, changes in many 1463 

climate variables are more coherent across climate model projections at global to ocean-1464 

basin scales and there can be significant differences between climate model projections at 1465 

local and regional scales (e.g., 500-1500 km).  IPCC-class climate models do often 1466 

capture the statistics of climate variability modes (e.g., ENSO, PDO, NAO) and it is 1467 

possible to use IPCC-class climate models to study the impact of climate variability on 1468 

LMRs.  However, century-scale simulations from IPCC-class climate models are not 1469 

designed to match the phase of climate variability modes and thus cannot be used to 1470 

predict their evolution for the coming decades.   Decadal-scale prediction experiments 1471 

being conducted as part of the IPCC AR5 may help address this limitation by providing 1472 
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estimates of the state of climate variability modes over the next 1-10 years (see Sections 1473 

3.2 and 6). 1474 

Information from IPCC-class climate models can be integrated with any of the 1475 

range of approaches described in Section 2.3 and the processes hypothesized to be critical 1476 

for the LMRs of interest should dictate the modeling approach. A primary concern with 1477 

simple LMR models for climate change applications is a common reliance on highly 1478 

empirical relationships between climate and emergent LMR responses.  Such 1479 

relationships may break down as climate changes (e.g., section 2). Hypotheses for the 1480 

mechanisms underlying these relationships should be stated and supported so that some 1481 

assessment of their robustness under new climate conditions is possible.  More complex 1482 

and mechanistic models can address this issue, but require information at the appropriate 1483 

space and time scales (Section 2.1-2.2) to constrain and validate the model.  In addition, 1484 

exploring a range of possible outcomes in complex models may pose a computational 1485 

challenge for climate change projections.  The trade-offs between simple and complex 1486 

models supports the value of a "two-pronged" approach similar to that articulated by 1487 

Hollowed et al. (2009).  Progress can be made by incorporating information from IPCC-1488 

class climate models into relatively simple to intermediate complexity stock assessment 1489 

and ecosystem models (e.g., case studies 1-5) while efforts to develop, constrain, and 1490 

couple comprehensive, "end-to-end" models with climate models continue (e.g., case 1491 

study 6).  1492 

The appropriate number of climate model projections to consider is also 1493 

contingent upon the objectives of the analysis.  Focused diagnosis of the LMR response 1494 

to a climate projection from a single model is appropriate for studies that emphasize 1495 



64 
 

detailed process-level analysis or rely on large-scale climate change features that are 1496 

robust across models.  Multi-model ensembles provide an effective means of defining a 1497 

range of possible climate impacts and the average of many climate models has been 1498 

shown to be closer to observed trends in several climate variables than any single model 1499 

(Section 3.1.4).  Refining multi-model projections by weighting or selecting models 1500 

based on their representation of historical climate conditions is an active area of research 1501 

and there are no widely accepted practices for doing so.  Recent studies have suggested 1502 

weak linkages between a climate model's representation of the mean climate state and the 1503 

model's ability to capture the historical climate change trend (Section 3.1.4).   Any model 1504 

weighting or selection scheme should be viewed as an important scientific aspect of a 1505 

study and should be supported by both empirical evidence of increased skill at matching 1506 

climate change trends over the historical period and process-level knowledge of the 1507 

deficiencies in down-weighted models.  The sensitivity of key results to the weighting 1508 

scheme versus the use of a full ensemble should also be assessed.  Lastly, care must also 1509 

be taken to avoid choosing model weights based on random phase differences in climate 1510 

variability.  Any match with changes in the phase of PDO over the last 10 years in a 1511 

century-scale climate simulation, for example, is purely coincidental (Section 3.1).  1512 

Evaluating models in ways that reward such a random match may result in an otherwise 1513 

poor model playing a disproportionate role in an LMR projection.  1514 

Adjusting projections using simple bias corrections to a climate model's mean 1515 

state for a given variable should be done with caution.  Such adjustments assume that the 1516 

projected climate change is independent of the mean climate state.  Calculating the 1517 

covariance between the projected change and the mean climate state across models 1518 



65 
 

provides one means of testing the validity of this assumption (McAfee & Russell, 1519 

submitted).  Simple bias corrections must also be calculated relative to long time-series to 1520 

remove any effects of out-of-phase climate variability and sensitivity of the primary 1521 

results to their application should be documented. 1522 

The lack of phase agreement of modes of climate variability in century-scale 1523 

climate simulations to those observed poses a challenge for calibrating LMR models 1524 

coupled to century-scale climate simulations.  Such models should not be calibrated 1525 

against observations on a year-to-year basis if climate variability is an important 1526 

mechanism driving year-to-year changes in the LMR of interest.  Evaluation metrics that 1527 

are not compromised by phase differences in climate variability modes, such as the mean 1528 

and variance of relevant quantities over many years, or the mean and variance of 1529 

quantities during similar phases of the prominent modes of climate variability, should be 1530 

used instead.  If a sufficient time-series is not available or if statistical properties are 1531 

insufficient to evaluate the model, historical ocean-ice simulations forced with 1532 

atmospheric reanalysis provide an alternative platform for LMR model calibration.  The 1533 

atmospheric forcing used in such simulations reflects observed year-to-year variations in 1534 

large-scale atmospheric features driven by climate variability (Large & Yeager, 2004)   1535 

A diverse array of downscaling techniques can be enlisted in cases where the 1536 

resolution of models is not fine enough to explicitly capture processes critical to the LMR 1537 

of interest (Section 3.1.1).  Crucial steps in establishing the plausibility of statistical 1538 

downscaling include identifying mechanisms that link the fine-scale features of interest 1539 

with the coarse scales of climate models, gathering enough data to establish a statistically 1540 

significant relationship, and assessing if the statistical relationship is likely to remain 1541 
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robust as climate changes.  Key considerations for dynamical downscaling include 1542 

computational cost and whether the coarse scale forcing from climate models can be 1543 

effectively coupled with fine-scale domains.  One-way dynamical downscaling allows 1544 

refined simulations to be run independently from global simulations, which may offer a 1545 

distinct advantage for studying the impacts of climate change on regional LMRs.  1546 

However, this configuration does omit feedbacks from the regional scale dynamics to the 1547 

ocean-basin and global scales.   In all cases, downscaled results are strongly linked to the 1548 

characteristics of the global, coarse-scale climate model simulation (e.g., Section 4.5). 1549 

Careful diagnosis of the characteristics of the the global-scale simulation in the region of 1550 

interest is an essential first step for any downscaling activity.  1551 

 1552 

6. Priority Developments 1553 

 While coupling IPCC-class climate models and LMR models can be challenging, 1554 

substantial progress in predicting and understanding the impacts of climate change on 1555 

LMRs can be made using present models and observations.  There are, however, several 1556 

areas where improvements to models and observations could greatly improve the 1557 

capacity to predict climate impacts on LMRs.  Efforts to address these issues should be 1558 

undertaken in parallel with efforts to apply existing tools.  1559 

One of the primary limitations of many LMR models for climate change 1560 

applications is the limited mechanistic understanding of climate-LMR links and the 1561 

limited representation of these links within models (Section 2).  Uncertainties related to 1562 

the use of highly empirical relationships between climate and LMR responses are 1563 

difficult to quantify but can be large.  Process-oriented field and laboratory observations 1564 
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focused on understanding these mechanisms and constraining their parameterization 1565 

within LMR models are needed to address this issue.  Observational and modeling efforts 1566 

should be tightly integrated.  Process-oriented observations should focus on those 1567 

processes and parameters that make large contributions to the uncertainty in projections 1568 

of the impact of climate on LMRs, and information gained from these efforts should be 1569 

continually incorporated into model projections to refine projections and reassess 1570 

dominant uncertainties.  Initiating this iterative process requires initial projections to be 1571 

made despite existing uncertainties. 1572 

Understanding the linkages between LMRs and climate change and variability 1573 

requires co-occurring LMR and physical climate observations over a broad range of 1574 

spatial and temporal scales.   This will require committed maintenance of existing time 1575 

series and ocean observing systems, coordination of observational efforts between 1576 

regions, and the initiation of new time series and observing systems in regions without 1577 

existing measurements.   It will also require continued investment in observational 1578 

technologies capable of resolving finer-scale interactions between LMRs and their 1579 

environment and closing the scale-gap between physical and biological measurements. 1580 

 Development of comprehensive, robust, and highly mechanistic "end-to-end" 1581 

LMR models is essential for effectively integrating the combined influence of climate 1582 

dynamics, ecosystem interactions, and human activities on LMRs (Sections 2.3.2 and 1583 

4.6). Critical knowledge gaps in "end-to-end" models need to be identified and more 1584 

clearly defined objectives for incorporating information from these models into 1585 

management decisions are needed.   While complex end-to-end models have proven 1586 

useful for providing strategic long-term advice, incorporating the information from such 1587 
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models into year-to-year reference points and quotas requires the development of 1588 

rigorous testing and review procedures.  This includes augmenting data collection efforts 1589 

so that the data required to support these models (i.e., constrain interactions, validate 1590 

dynamics) is available.  The review process will require panels with diverse expertise 1591 

capable of communicating across disciplines. 1592 

 Key improvements to century-scale physical climate model simulations for LMR 1593 

applications include better resolution of shelf-scale circulation and basin-shelf exchanges.  1594 

Increases in computing power over the next decade should enable climate simulations to 1595 

be regularly run with grid resolutions comparable to present regional ocean simulations 1596 

(~10 km).  Increased resolution, in combination with appropriate changes to sub-grid 1597 

scale parameterizations, should help decrease model biases in some coastal regions (e.g., 1598 

eastern boundary upwelling regions).  Model biases and inter-model spread in climate 1599 

models, however, arise from diverse sources beyond resolution.  General efforts to 1600 

improve understanding of climate system dynamics over a range of scales and improve 1601 

the representation of these dynamics within climate models are essential to understanding 1602 

and addressing model biases and inter-model spread. 1603 

 While improved climate model resolution should facilitate the direct application 1604 

of IPCC-class climate models for LMR prediction, the large range of spatial and temporal 1605 

dynamics influencing LMRs (Section 2.1) suggests that downscaling techniques will 1606 

continue to play an important role in the prediction of climate impacts on LMRs.  Finer-1607 

resolution global simulations should facilitate dynamical downscaling for continental 1608 

shelves by providing boundary conditions that better reflect shelf dynamics, bathymetry, 1609 

and the energetic ocean currents often adjacent to shelves (particularly along the western 1610 
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boundaries of ocean basins).  The increases in computing power that enable finer 1611 

resolution global simulations should also allow regional simulations to more adequately 1612 

resolve near-shore regions (e.g., estuaries) critical to the early life stages of many LMRs. 1613 

 A key limitation of century-scale climate model simulations for LMR applications 1614 

is that the simulations are not designed to predict the state of climate variability modes 1615 

over the next decade.  Most LMR management plans are formulated over inter-annual to 1616 

decadal timescales and robust decadal-scale climate prediction systems with defined 1617 

uncertainties are essential for incorporating climate information into LMR management.  1618 

This is particularly true for ecosystems that exhibit marked climate-driven regime shifts 1619 

on decadal time-scales (Section 2.1).   Decadal climate prediction simulations being 1620 

conducted for IPCC-AR5 will provide further insight into the mechanisms underlying 1621 

climate variability and a comprehensive evaluation of the extent to which decadal climate 1622 

prediction can be realized with present climate models and observations. 1623 

 Continued development of Earth System Models will provide a platform for 1624 

running simulations that more fully integrate climate dynamics with aspects of ecosystem 1625 

dynamics and human activities.  ESM simulations presently underway for IPCC AR5 will 1626 

provide projections of numerous ecologically relevant variables (e.g., productivity, 1627 

oxygen, alkalinity) not included in physical climate model projections.  In many cases, 1628 

these new variables have closer mechanistic links to LMR responses than physical 1629 

climate variables.  Improvements in the representation of marine foodweb dynamics and 1630 

the higher trophic levels should further strengthen mechanistic links and provide a strong 1631 

foundation for end-to-end modeling efforts.  It should be recognized, however, that ESMs 1632 

do include many potentially complex interactions between climate and ecosystems.  The 1633 
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scientific understanding and constraints on some of these interactions are low (Denman et 1634 

al., 2007).  Model projections will improve as these interactions become better observed, 1635 

better understood, and lead to model improvements. 1636 

  Improved measures of the likelihood of LMR projections are essential for 1637 

devising appropriate management strategies.  Ensemble approaches (Section 3.1.2) are 1638 

essential in this regard, but there are no widely-accepted approaches for refining these 1639 

estimates based on objective metrics of model skill.  For LMR projections, ensembles 1640 

should account for parameter uncertainty and, where necessary, consider multiple LMR 1641 

models capable of explaining past observations and whose model structures are supported 1642 

on theoretical grounds.  The value of detailed diagnosis of individual projections for 1643 

understanding mechanisms, however, must still be recognized despite the value of 1644 

ensembles for quantifying uncertainty. 1645 

 1646 

7. Concluding Remarks 1647 

The importance of understanding the impacts of climate variability and climate 1648 

change on LMRs has been widely recognized by international and national organizations 1649 

with mandates to monitor and responsibly manage these valuable resources.  IPCC-class 1650 

climate models will play a central role in studying these impacts and developing forecasts 1651 

that can be used to formulate appropriate long-term management policies.  Understanding 1652 

of the climate system and its representation within IPCC-class climate models has 1653 

progressed to a point where many applications of IPCC-class climate models to LMR 1654 

problems are now possible.  Concerted research in the areas outlined in Section 6 over the 1655 

next decade has great potential to make forecasts of the impacts of climate change on 1656 



71 
 

LMRs more robust and mechanistic, decrease the uncertainty in projections, and enable 1657 

predictions on space and time scales not presently possible.   1658 

The success of efforts to predict climate impacts on LMRs is contingent upon 1659 

close collaboration between climate and LMR scientists, as well as other experts 1660 

spanning a range of physical, biological, chemical and socioeconomic factors that 1661 

influence LMRs and the ecosystems in which they reside.  Such collaborations must be 1662 

populated with scientists who are able to communicate across disciplines.  The present 1663 

synthesis is intended to facilitate this process, but sustained success will require 1664 

educational programs with the flexibility and breadth to accommodate the multi-1665 

disciplinary nature of climate change impacts problems.  Dedicated funding mechanisms 1666 

will also be necessary to develop the underlying science in relevant research areas, 1667 

integrate developments, and translate new science to improved management.  These are 1668 

formidable tasks, but rapid progress in recent years gives cause for great optimism. 1669 
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Table 1: IPCC AR4 model resolution.  Horizontal resolutions for the ocean are given in 1680 
degrees of latitude and longitude.  Atmospheric resolutions are given by either degrees of 1681 
latitude and longitude or, for atmospheric models using spherical harmonics, a triangular 1682 
truncation number (e.g., T63).  This represents the number of spherical harmonics 1683 
resolved by the model.  An approximate formula for the grid resolution for a model with 1684 
truncation number n is 360/(3n+1).  A T63 atmospheric model thus has a grid resolution 1685 
of approximately 1.9 degrees.   The number following the L gives the number of vertical 1686 
levels.   1687 

Model Name Oceanic resolution Atmospheric 
Resolution 

BCCR BCM2.0 2.4o x 2.4o L24 T63 L31 

CGCM3.1 T47 1.85o x 1.85o L29 T47 L31 

CGCM3.1 T63 1.4o x 0.94o L29 T63 L31 

CNRM CM3 2o x 0.5o L31 T63 L45 

CSIRO Mk3.0 1.875o x 0.84o L31 T47 L31 

GFDL CM2.0 1o x 1o L50 2.5o x 2o L24 

GFDL CM2.1 1o x 1o L50 2.5o x 2o L24 

GISS AOM 4o x 3o L16 4o x 3o L12 

GISS-EH 2o x 2o L16 5o x 4o L20 

GISS-ER 5o x 4o L13 5o x 4o L20 

IAP FGOALS 1o x 1o L33 T42 L26 

INM CM3.0 2.5o x 2o L33 5o x 4o L21 

IPSL CM4 2o x 1o L31 2.5o x 3.75o L19 

MIROC HI 0.28o x 0.19o L47 T106 L56 

MIROC Med 1.4o x 0.5o L43 T42 L20 

MIUB ECHO-G 2.8o x 2.8o L20 T30 L19 

MPI ECHAM5 1.5o x 1.5o L40 T36 L31 

MRI CGCM2.3 2.5o x 0.5o L23 T42 L30 

NCAR CCSM3 1.1o x 1.1o L40 T85 L26 

NCAR PCM1 2/3o x 1/2o L32 T42 L18 

UKMet HadCM3 1.25o x 1.25o L30 3.75o x 2.5o L19 

UKMet HadGem1 1o x 1o L40 1.875o x 1.25o L38 

 1688 
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 1690 

 1691 
 1692 
Figure 1: Time-horizontal spatial scale diagram illustrating the range of scales over which 1693 
environmental variability and biological processes occur and interact (source: Dickey, 1694 
2003). 1695 

1696 
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 1697 

 1698 
 1699 
Figure 2: Schematic of the climate system.  Climate models have become increasingly 1700 
realistic over the past decades and capture an increasing number of the processes 1701 
illustrated in this figure. (source: IPCC AR4 report) 1702 

1703 
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 1704 
 1705 
Figure 3: Illustrative example of the impact of resolution.  The left panel shows 1706 
horizontal current vectors and vertical velocities (color contours) for the 1707 
Oregon/Washington coast in GFDL CM2.1.  This model has a horizontal resolution of 1o 1708 
at the coast and (~68 km horizontal resolution at 47oN).  The right panel shows the same 1709 
quantities for GFDL CM2.4 (~17 km horizontal resolution at 47oN).   1710 

1711 
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 1712 
 1713 
Figure 4: Detecting the signature of global warming over the historical period of a 1714 
climate model simulation is generally more difficult at regional scales.  The left plot 1715 
shows a 6 member ensemble from GFDL’s CM2.1 and the ensemble mean for the global 1716 
mean temperature.  A clear century-scale trend is apparent despite substantial internal 1717 
variability in the climate system.  The right plot shows the same comparison for the 1718 
Northeast Pacific.  Any century-scale trends are obscured by large internal variability. 1719 

1720 
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 1721 

 1722 
 1723 
Figure 5: The relative prominence of decadal variability at regional scales is not 1724 
universal.  This plot shows observed SST variations since 1880 in the central equatorial 1725 
Pacific from two SST products.  Interannual to decadal-scale fluctuations are modest and 1726 
the forced signal is apparent despite the limited extent of the region analyzed. 1727 

1728 
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 1729 
 1730 

 1731 
 1732 
Figure 6: Annual mean SST difference between the mean SST in CM2.1 under 1990 1733 
radiative forcing and observed mean SST between 1982-2002. 1734 

1735 
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 1736 

 1737 

Figure 7:  Predicted global pattern of species invasion (a) and local extinction (b) in 2050 
relative to 2000 due to range shifts in marine metazoans SRES A1B scenario. The values 
are expressed as proportion relative to the initial species richness in each 30’ x 30’ cell. 
This is based on an analysis of 1,066 species of marine fish and invertebrates (redrawn 
from Cheung et al. 2009a). 

 1738 
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 1739 
Figure 8: Density distribution of Pacific bigeye tuna larvae (left, in number per km-2) and 1740 
adult biomass (right in tons per km-2) predicted with SEAPODYM in January of year 1741 
1900, 2000, and 2099 (from top to bottom) from the IPSL-PISCES climate simulation 1742 
(IPCC SRES-A2 scenario).  Reprinted from Lehodey et al. (accepted) 1743 
 1744 
 1745 

1746 



81 
 

 1747 
 1748 
Figure 9: A: Weights of various IPCC-AR4 models used in forming ensemble mean 1749 
using a Bayesian model averaging approach.  The criteria used for evaluating models 1750 
were the accuracy of their hindcasts in terms of reproducing the mean, variance, and 1751 
trend in the observed wind of the Bering shelf over the last half of the 20th century. B: 1752 
Predicted mean and standard deviation of the longitudinal endpoint of projected larval 1753 
drift from spring winds for 2001-2050.  Background shading reflects classification of 1754 
endpoints according to spring climate condition: on-shelf drift (lightest shading), off-1755 
shelf drift (darkest shading), and mid-shelf drift (intermediate shading).  Redrawn from 1756 
Hollowed et al. (2009).1757 
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 1758 
Figure 10: Predicting climate impacts on the Atlantic Croaker.  Top panel: the effect of 1759 
minimum winter air temperature on recruitment.  Middle panel: the predicted spawning 1760 
stock biomass of Atlantic Croaker for each of 14 different bias-corrected climate model 1761 
projections and three different scenarios for a fishing pressure (F) of 0.1 day-1.  Lower 1762 
panel: The predicted yields for each of the three climate scenarios and the present yield as 1763 
a function of fishing mortality rate.  The maximum sustainable yield for each case is 1764 
marked with a triangle.  The shaded regions indicates the range of results across the 1765 
multi-model ensemble.  Redrawn from Hare et al. (2010). 1766 
 1767 
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 1768 
Fig. 11. The probability of Baltic cod spawning stock biomass (SSB) falling below the 1769 
limiting stock size (Blim). Decrease in salinity is relative to the mean salinity from 1974-1770 
2004. The risk of falling below Blim increases rapidly and non-linearly as salinities 1771 
decrease with increasing fishing mortalities (Redrawn from Lindgren et al. (2010)). 1772 
 1773 
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